These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 17502378)
1. The 1.8 A crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of Pseudomonas aeruginosa. Drake EJ; Cao J; Qu J; Shah MB; Straubinger RM; Gulick AM J Biol Chem; 2007 Jul; 282(28):20425-34. PubMed ID: 17502378 [TBL] [Abstract][Full Text] [Related]
2. Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. Baltz RH J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1747-60. PubMed ID: 21826462 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of novel Pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa. Calcott MJ; Owen JG; Lamont IL; Ackerley DF Appl Environ Microbiol; 2014 Sep; 80(18):5723-31. PubMed ID: 25015884 [TBL] [Abstract][Full Text] [Related]
4. Subcellular localization of the pyoverdine biogenesis machinery of Pseudomonas aeruginosa: a membrane-associated "siderosome". Imperi F; Visca P FEBS Lett; 2013 Nov; 587(21):3387-91. PubMed ID: 24042050 [TBL] [Abstract][Full Text] [Related]
5. Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. Owen JG; Ackerley DF BMC Microbiol; 2011 Oct; 11():218. PubMed ID: 21967163 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis of a clickable pyoverdine via in vivo enzyme engineering of an adenylation domain. Puja H; Bianchetti L; Revol-Tissot J; Simon N; Shatalova A; Nommé J; Fritsch S; Stote RH; Mislin GLA; Potier N; Dejaegere A; Rigouin C Microb Cell Fact; 2024 Jul; 23(1):207. PubMed ID: 39044227 [TBL] [Abstract][Full Text] [Related]
7. Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes. Herbst DA; Boll B; Zocher G; Stehle T; Heide L J Biol Chem; 2013 Jan; 288(3):1991-2003. PubMed ID: 23192349 [TBL] [Abstract][Full Text] [Related]
8. Characterization and genetic manipulation of peptide synthetases in Pseudomonas aeruginosa PAO1 in order to generate novel pyoverdines. Ackerley DF; Lamont IL Chem Biol; 2004 Jul; 11(7):971-80. PubMed ID: 15271355 [TBL] [Abstract][Full Text] [Related]
9. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Quadri LE; Sello J; Keating TA; Weinreb PH; Walsh CT Chem Biol; 1998 Nov; 5(11):631-45. PubMed ID: 9831524 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of the putative siderophore erythrochelin requires unprecedented crosstalk between separate nonribosomal peptide gene clusters. Lazos O; Tosin M; Slusarczyk AL; Boakes S; Cortés J; Sidebottom PJ; Leadlay PF Chem Biol; 2010 Feb; 17(2):160-73. PubMed ID: 20189106 [TBL] [Abstract][Full Text] [Related]
11. Portability of the thiolation domain in recombinant pyoverdine non-ribosomal peptide synthetases. Calcott MJ; Ackerley DF BMC Microbiol; 2015 Aug; 15():162. PubMed ID: 26268580 [TBL] [Abstract][Full Text] [Related]
12. Chemistry and biology of pyoverdines, Pseudomonas primary siderophores. Cézard C; Farvacques N; Sonnet P Curr Med Chem; 2015; 22(2):165-86. PubMed ID: 25312210 [TBL] [Abstract][Full Text] [Related]
13. Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins. Zhang W; Heemstra JR; Walsh CT; Imker HJ Biochemistry; 2010 Nov; 49(46):9946-7. PubMed ID: 20964365 [TBL] [Abstract][Full Text] [Related]
14. Pyoverdine siderophores: from biogenesis to biosignificance. Visca P; Imperi F; Lamont IL Trends Microbiol; 2007 Jan; 15(1):22-30. PubMed ID: 17118662 [TBL] [Abstract][Full Text] [Related]
15. PvdL Orchestrates the Assembly of the Nonribosomal Peptide Synthetases Involved in Pyoverdine Biosynthesis in Manko H; Steffan T; Gasser V; Mély Y; Schalk I; Godet J Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892200 [TBL] [Abstract][Full Text] [Related]
16. Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. Smith EE; Sims EH; Spencer DH; Kaul R; Olson MV J Bacteriol; 2005 Mar; 187(6):2138-47. PubMed ID: 15743962 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of PvdO from Pseudomonas aeruginosa. Yuan Z; Gao F; Bai G; Xia H; Gu L; Xu S Biochem Biophys Res Commun; 2017 Feb; 484(1):195-201. PubMed ID: 28109878 [TBL] [Abstract][Full Text] [Related]
18. Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mossialos D; Ochsner U; Baysse C; Chablain P; Pirnay JP; Koedam N; Budzikiewicz H; Fernández DU; Schäfer M; Ravel J; Cornelis P Mol Microbiol; 2002 Sep; 45(6):1673-85. PubMed ID: 12354233 [TBL] [Abstract][Full Text] [Related]
19. Substrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa. Ackerley DF; Caradoc-Davies TT; Lamont IL J Bacteriol; 2003 May; 185(9):2848-55. PubMed ID: 12700264 [TBL] [Abstract][Full Text] [Related]
20. Analyses of MbtB, MbtE, and MbtF suggest revisions to the mycobactin biosynthesis pathway in Mycobacterium tuberculosis. McMahon MD; Rush JS; Thomas MG J Bacteriol; 2012 Jun; 194(11):2809-18. PubMed ID: 22447909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]