These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17502685)

  • 1. A mathematical model for the dissolution of non-occlusive blood clots in fast tangential blood flow.
    Sersa I; Tratar G; Mikac U; Blinc A
    Biorheology; 2007; 44(1):1-16. PubMed ID: 17502685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the effect of laminar axially directed blood flow on the dissolution of non-occlusive blood clots.
    Sersa I; Vidmar J; Grobelnik B; Mikac U; Tratar G; Blinc A
    Phys Med Biol; 2007 Jun; 52(11):2969-85. PubMed ID: 17505083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbulent axially directed flow of plasma containing rt-PA promotes thrombolysis of non-occlusive whole blood clots in vitro.
    Tratar G; Blinc A; Strukelj M; Mikac U; Sersa I
    Thromb Haemost; 2004 Mar; 91(3):487-96. PubMed ID: 14983224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood clot dissolution dynamics simulation during thrombolytic therapy.
    Sersa I; Tratar G; Blinc A
    J Chem Inf Model; 2005; 45(6):1686-90. PubMed ID: 16309274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of blood clot degradation fragment sizes in relation to plasma flow velocity.
    Bajd F; Vidmar J; Blinc A; Serša I
    Gen Physiol Biophys; 2012 Sep; 31(3):237-45. PubMed ID: 23047936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow through clots determines the rate and pattern of fibrinolysis.
    Blinc A; Kennedy SD; Bryant RG; Marder VJ; Francis CW
    Thromb Haemost; 1994 Feb; 71(2):230-5. PubMed ID: 8191404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of flow on lysis of plasma clots in a plasma environment.
    Sakharov DV; Rijken DC
    Thromb Haemost; 2000 Mar; 83(3):469-74. PubMed ID: 10744155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of blood clot lysis on the mode of transport of urokinase into the clot--a magnetic resonance imaging study in vitro.
    Blinc A; Planinsic G; Keber D; Jarh O; Lahajnar G; Zidansĕk A; Demsar F
    Thromb Haemost; 1991 May; 65(5):549-52. PubMed ID: 1871717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental and theoretical study on the dissolution of mural fibrin clots by tissue-type plasminogen activator.
    Wootton DM; Popel AS; Alevriadou BR
    Biotechnol Bioeng; 2002 Feb; 77(4):405-19. PubMed ID: 11787013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and biophysical conditions for blood clot lysis.
    Sabovic M; Blinc A
    Pflugers Arch; 2000; 440(5 Suppl):R134-6. PubMed ID: 11005642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow.
    Piebalgs A; Xu XY
    J R Soc Interface; 2015 Dec; 12(113):20150949. PubMed ID: 26655469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A concept of thrombolysis as a corrosion-erosion process verified by optical microscopy.
    Bajd F; Serša I
    Microcirculation; 2012 Oct; 19(7):632-41. PubMed ID: 22612378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysing patterns of retracted blood clots with diffusion or bulk flow transport of plasma with urokinase into clots--a magnetic resonance imaging study in vitro.
    Blinc A; Keber D; Lahajnar G; Stegnar M; Zidansek A; Demsar F
    Thromb Haemost; 1992 Dec; 68(6):667-71. PubMed ID: 1287880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic clot fragment evidence of biochemo-mechanical degradation effects in thrombolysis.
    Bajd F; Vidmar J; Blinc A; Sersa I
    Thromb Res; 2010 Aug; 126(2):137-43. PubMed ID: 20580981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance of a fibrin clot in a cylindrical tube: relation to clot permeability and viscoelasticity.
    Thurston GB; Henderson NM
    Biorheology; 1995; 32(5):503-20. PubMed ID: 8541521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non spiral and spiral (helical) flow patterns in stenoses. In vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computational fluid dynamic modeling.
    Stonebridge PA; Buckley C; Thompson A; Dick J; Hunter G; Chudek JA; Houston JG; Belch JJ
    Int Angiol; 2004 Sep; 23(3):276-83. PubMed ID: 15765044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms by which thrombolytic therapy results in nonuniform lysis and residual thrombus after reperfusion.
    Anand S; Kudallur V; Pitman EB; Diamond SL
    Ann Biomed Eng; 1997; 25(6):964-74. PubMed ID: 9395042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residence time in niches of stagnant flow determines fibrin clot formation in an arterial branching model--detailed flow analysis and experimental results.
    Reininger AJ; Reininger CB; Heinzmann U; Wurzinger LJ
    Thromb Haemost; 1995 Sep; 74(3):916-22. PubMed ID: 8571321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the ADC and T2 mapping in an assessment of blood-clot lysability.
    Vidmar J; Blinc A; Sersa I
    NMR Biomed; 2010 Jan; 23(1):34-40. PubMed ID: 19642088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occlusive thrombus formation on indwelling catheters: in vitro investigation and computational analysis.
    Friedrich P; Reininger AJ
    Thromb Haemost; 1995 Jan; 73(1):66-72. PubMed ID: 7740499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.