These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 17502919)

  • 1. On the dynamics of the spontaneous activity in neuronal networks.
    Mazzoni A; Broccard FD; Garcia-Perez E; Bonifazi P; Ruaro ME; Torre V
    PLoS One; 2007 May; 2(5):e439. PubMed ID: 17502919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network burst activity in hippocampal neuronal cultures: the role of synaptic and intrinsic currents.
    Suresh J; Radojicic M; Pesce LL; Bhansali A; Wang J; Tryba AK; Marks JD; van Drongelen W
    J Neurophysiol; 2016 Jun; 115(6):3073-89. PubMed ID: 26984425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeostatic presynaptic suppression of neuronal network bursts.
    Cohen D; Segal M
    J Neurophysiol; 2009 Apr; 101(4):2077-88. PubMed ID: 19193770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.
    Lonardoni D; Amin H; Di Marco S; Maccione A; Berdondini L; Nieus T
    PLoS Comput Biol; 2017 Jul; 13(7):e1005672. PubMed ID: 28749937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous activity and recurrent inhibition in cultured hippocampal networks.
    Siebler M; Köller H; Stichel CC; Müller HW; Freund HJ
    Synapse; 1993 Jul; 14(3):206-13. PubMed ID: 8211707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrethroid modulation of spontaneous neuronal excitability and neurotransmission in hippocampal neurons in culture.
    Meyer DA; Carter JM; Johnstone AF; Shafer TJ
    Neurotoxicology; 2008 Mar; 29(2):213-25. PubMed ID: 18243323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical properties of information processing in neuronal networks.
    Bonifazi P; Ruaro ME; Torre V
    Eur J Neurosci; 2005 Dec; 22(11):2953-64. PubMed ID: 16324130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of spontaneous activity in networks of cultured hippocampus.
    Cohen E; Ivenshitz M; Amor-Baroukh V; Greenberger V; Segal M
    Brain Res; 2008 Oct; 1235():21-30. PubMed ID: 18602907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.
    Li Y; Zhou W; Li X; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Jun; 22(12):2976-82. PubMed ID: 17240134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy.
    Srinivas KV; Jain R; Saurav S; Sikdar SK
    Eur J Neurosci; 2007 Jun; 25(11):3276-86. PubMed ID: 17552996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscale Architecture Shapes Initiation and Richness of Spontaneous Network Activity.
    Okujeni S; Kandler S; Egert U
    J Neurosci; 2017 Apr; 37(14):3972-3987. PubMed ID: 28292833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term recording on multi-electrode array reveals degraded inhibitory connection in neuronal network development.
    Li X; Zhou W; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Feb; 22(7):1538-43. PubMed ID: 16829068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2009 Oct; 22(8):1139-58. PubMed ID: 19679445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxytocin neurones are recruited into co-ordinated fluctuations of firing before bursting in the rat.
    Moos F; Fontanaud P; Mekaouche M; Brown D
    Neuroscience; 2004; 125(2):391-410. PubMed ID: 15062982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extremely rich repertoire of bursting patterns during the development of cortical cultures.
    Wagenaar DA; Pine J; Potter SM
    BMC Neurosci; 2006 Feb; 7():11. PubMed ID: 16464257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network bursts in cortical cultures are best simulated using pacemaker neurons and adaptive synapses.
    Gritsun TA; Le Feber J; Stegenga J; Rutten WL
    Biol Cybern; 2010 Apr; 102(4):293-310. PubMed ID: 20157725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs.
    Gandolfo M; Maccione A; Tedesco M; Martinoia S; Berdondini L
    J Neural Eng; 2010 Oct; 7(5):056001. PubMed ID: 20720282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.