These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17503068)

  • 1. Changes in multi-segmented body movements and EMG activity while standing on firm and foam support surfaces.
    Fransson PA; Gomez S; Patel M; Johansson L
    Eur J Appl Physiol; 2007 Sep; 101(1):81-9. PubMed ID: 17503068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation and vision change the relationship between muscle activity of the lower limbs and body movement during human balance perturbations.
    Patel M; Gomez S; Lush D; Fransson PA
    Clin Neurophysiol; 2009 Mar; 120(3):601-9. PubMed ID: 19136294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of foam surface properties on postural stability assessment while standing.
    Patel M; Fransson PA; Lush D; Gomez S
    Gait Posture; 2008 Nov; 28(4):649-56. PubMed ID: 18602829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences between body movement adaptation to calf and neck muscle vibratory proprioceptive stimulation.
    Gomez S; Patel M; Magnusson M; Johansson L; Einarsson EJ; Fransson PA
    Gait Posture; 2009 Jul; 30(1):93-9. PubMed ID: 19398340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of upright standing posture during trunk rotation elicited by rapid and asymmetrical movements of the arms.
    Yamazaki Y; Suzuki M; Ohkuwa T; Itoh H
    Brain Res Bull; 2005 Sep; 67(1-2):30-9. PubMed ID: 16140160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of multi-segmented body movements during vibratory proprioceptive and galvanic vestibular stimulation.
    Fransson PA; Hjerpe M; Johansson R
    J Vestib Res; 2007; 17(1):47-62. PubMed ID: 18219104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood alcohol concentration at 0.06 and 0.10% causes a complex multifaceted deterioration of body movement control.
    Modig F; Fransson PA; Magnusson M; Patel M
    Alcohol; 2012 Feb; 46(1):75-88. PubMed ID: 21816558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central programming of postural movements: adaptation to altered support-surface configurations.
    Horak FB; Nashner LM
    J Neurophysiol; 1986 Jun; 55(6):1369-81. PubMed ID: 3734861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human stance on a sinusoidally translating platform: balance control by feedforward and feedback mechanisms.
    Dietz V; Trippel M; Ibrahim IK; Berger W
    Exp Brain Res; 1993; 93(2):352-62. PubMed ID: 8491275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast voluntary trunk flexion movements in standing: motor patterns.
    Oddsson L; Thorstensson A
    Acta Physiol Scand; 1987 Jan; 129(1):93-106. PubMed ID: 3565047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A postural model of balance-correcting movement strategies.
    Allum JH; Honegger F
    J Vestib Res; 1992; 2(4):323-47. PubMed ID: 1342406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone.
    Horak FB; Frank J; Nutt J
    J Neurophysiol; 1996 Jun; 75(6):2380-96. PubMed ID: 8793751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time to reconfigure balancing behaviour in man: changing visual condition while riding a continuously moving platform.
    De Nunzio AM; Schieppati M
    Exp Brain Res; 2007 Mar; 178(1):18-36. PubMed ID: 17013618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergies and strategies underlying normal and vestibulary deficient control of balance: implication for neuroprosthetic control.
    Allum JH; Honegger F
    Prog Brain Res; 1993; 97():331-48. PubMed ID: 8234759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for beta corticomuscular coherence during human standing balance: Effects of stance width, vision, and support surface.
    Jacobs JV; Wu G; Kelly KM
    Neuroscience; 2015 Jul; 298():1-11. PubMed ID: 25869620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of virtual reality on postural stability during movements of quiet stance.
    Horlings CG; Carpenter MG; Küng UM; Honegger F; Wiederhold B; Allum JH
    Neurosci Lett; 2009 Feb; 451(3):227-31. PubMed ID: 19146921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of artificially increased hip and trunk stiffness on balance control in man.
    Grüneberg C; Bloem BR; Honegger F; Allum JH
    Exp Brain Res; 2004 Aug; 157(4):472-85. PubMed ID: 15138751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.