These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1750319)

  • 1. The postnatal development of the oscillatory potentials of the electroretinogram. III. Scotopic characteristics.
    el Azazi M; Wachtmeister L
    Acta Ophthalmol (Copenh); 1991 Aug; 69(4):505-10. PubMed ID: 1750319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The postnatal development of the oscillatory potentials of the electroretinogram. I. Basic characteristics.
    el-Azazi M; Wachtmeister L
    Acta Ophthalmol (Copenh); 1990 Aug; 68(4):401-9. PubMed ID: 2220355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The postnatal development of the oscillatory potentials of the electroretinogram. II. Photopic characteristics.
    el Azazi M; Wachtmeister L
    Acta Ophthalmol (Copenh); 1991 Feb; 69(1):6-10. PubMed ID: 2028769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The postnatal development of the oscillatory potentials of the electroretinogram. IV. Mesopic characteristics.
    el Azazi M; Wachtmeister L
    Acta Ophthalmol (Copenh); 1992 Apr; 70(2):194-200. PubMed ID: 1609567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory potentials in the retina: what do they reveal.
    Wachtmeister L
    Prog Retin Eye Res; 1998 Oct; 17(4):485-521. PubMed ID: 9777648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The postnatal development of the oscillatory potentials of the electroretinogram V. Relation to the double peaked a-wave.
    el Azazi M; Wachtmeister L
    Acta Ophthalmol (Copenh); 1993 Feb; 71(1):32-8. PubMed ID: 8475710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Background light adaptation of the retinal neuronal adaptive system. I. Effect of background light intensity.
    Wang L; el Azazi M; Eklund A; Lillemor W
    Doc Ophthalmol; 2001 Jul; 103(1):13-26. PubMed ID: 11678157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the scotopic electroretinogram and oscillatory potentials with systemic hyperoxia and hypercapnia in humans.
    Faucher C; Kergoat H
    Curr Eye Res; 2002 May; 24(5):376-86. PubMed ID: 12434306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinitis pigmentosa and inner retina. Functional study by means of oscillatory potentials of the electroretinogram.
    Ponte F; Anastasi M; Lauricella MR
    Doc Ophthalmol; 1989 Dec; 73(4):337-46. PubMed ID: 2637116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial properties of the oscillatory potentials of the frog electroretinogram in relation to state of adaptation.
    Wachtmeister L; Hahn I
    Acta Ophthalmol (Copenh); 1987 Dec; 65(6):724-30. PubMed ID: 3501666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal A2A and A3 adenosine receptors modulate the components of the rat electroretinogram.
    Jonsson G; Eysteinsson T
    Vis Neurosci; 2017 Jan; 34():E001. PubMed ID: 28304243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oscillatory potentials of the dark-adapted electroretinogram in retinopathy of prematurity.
    Akula JD; Mocko JA; Moskowitz A; Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5788-97. PubMed ID: 18055833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a brief period of enhanced oxygen susceptibility in the rat model of oxygen-induced retinopathy.
    Dembinska O; Rojas LM; Chemtob S; Lachapelle P
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2481-90. PubMed ID: 12091454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroretinographic oscillatory potentials in different aged rats: an analysis in the domains of time and frequency.
    Ye H; Liu X; Tie H; Sun Y; Li P
    Yan Ke Xue Bao; 1998 Mar; 14(1):27-9. PubMed ID: 12580072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the electroretinogram resulting from discontinuation of vigabatrin in children.
    Westall CA; Nobile R; Morong S; Buncic JR; Logan WJ; Panton CM
    Doc Ophthalmol; 2003 Nov; 107(3):299-309. PubMed ID: 14711162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illumination.
    Lundström AL; Wang L; Wachtmeister L
    Acta Ophthalmol Scand; 2007 Nov; 85(7):756-63. PubMed ID: 17488317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electroretinogram recorded at the onset of dark-adaptation: understanding the origin of the scotopic oscillatory potentials.
    Rousseau S; Lachapelle P
    Doc Ophthalmol; 1999; 99(2):135-50. PubMed ID: 11097118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy.
    Holopigian K; Seiple W; Lorenzo M; Carr R
    Invest Ophthalmol Vis Sci; 1992 Sep; 33(10):2773-80. PubMed ID: 1526726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory potentials and the b-Wave: partial masking and interdependence in dark adaptation and diabetes in the rat.
    Layton CJ; Safa R; Osborne NN
    Graefes Arch Clin Exp Ophthalmol; 2007 Sep; 245(9):1335-45. PubMed ID: 17265029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes of oscillatory potentials of electroretinogram after methanol intoxication in rats].
    Liu DM; Zhou S; Chen JM; Peng SY; Xia WT
    Fa Yi Xue Za Zhi; 2014 Jun; 30(3):178-80. PubMed ID: 25272870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.