BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17503224)

  • 1. A new approach to visualizing the membranous structures of the inner ear - high resolution X-ray micro-tomography.
    Uzun H; Curthoys IS; Jones AS
    Acta Otolaryngol; 2007 Jun; 127(6):568-73. PubMed ID: 17503224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attachment of the utricular and saccular maculae to the temporal bone.
    Uzun-Coruhlu H; Curthoys IS; Jones AS
    Hear Res; 2007 Nov; 233(1-2):77-85. PubMed ID: 17919861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The configuration and attachment of the utricular and saccular maculae to the temporal bone. New evidence from microtomography-CT studies of the membranous labyrinth.
    Curthoys IS; Uzun-Coruhlu H; Wong CC; Jones AS; Bradshaw AP
    Ann N Y Acad Sci; 2009 May; 1164():13-8. PubMed ID: 19645875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minute findings of inner ear anomalies by three-dimensional CT scanning.
    Isono M; Murata K; Aiba K; Miyashita H; Tanaka H; Ishikawa M
    Int J Pediatr Otorhinolaryngol; 1997 Oct; 42(1):41-53. PubMed ID: 9477352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometrical and volume changes of the membranous vestibular labyrinth in guinea pigs with endolymphatic hydrops.
    Wu C; Yang L; Hua C; Wang K; Zhang T; Dai P
    ORL J Otorhinolaryngol Relat Spec; 2013; 75(2):108-16. PubMed ID: 23817074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution CT scan of the temporal bone.
    Lamothe A; Brazeau-Lamontagne L; Bergeron D; Poliquin JF; Strom BG
    J Otolaryngol; 1983 Apr; 12(2):119-24. PubMed ID: 6602893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.
    Wong CC; Curthoys IS; O'Leary SJ; Jones AS
    Acta Otolaryngol; 2013 Jan; 133(1):22-7. PubMed ID: 22992040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual labyrinthoscopy: visualization of the inner ear with interactive direct volume rendering.
    Tomandl BF; Hastreiter P; Eberhardt KE; Rezk-Salama C; Naraghi R; Greess H; Nissen U; Huk WJ
    Radiographics; 2000; 20(2):547-58. PubMed ID: 10715349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphogenesis of the inner ear at different stages of normal human development.
    Toyoda S; Shiraki N; Yamada S; Uwabe C; Imai H; Matsuda T; Yoneyama A; Takeda T; Takakuwa T
    Anat Rec (Hoboken); 2015 Dec; 298(12):2081-90. PubMed ID: 26369281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional analysis of the vestibular end organs in relation to the stapes footplate and piston placement.
    Mukherjee P; Uzun-Coruhlu H; Curthoys IS; Jones AS; Bradshaw AP; Pohl DV
    Otol Neurotol; 2011 Apr; 32(3):367-72. PubMed ID: 21283036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional study of vestibular anatomy as it relates to the stapes footplate and its clinical implications: an augmented reality development.
    Mukherjee P; Cheng K; Curthoys I
    J Laryngol Otol; 2019 Mar; 133(3):187-191. PubMed ID: 30821225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional visualization of the human membranous labyrinth: The membrana limitans and its role in vestibular form.
    Smith CM; Curthoys IS; Mukherjee P; Wong C; Laitman JT
    Anat Rec (Hoboken); 2022 May; 305(5):1037-1050. PubMed ID: 34021723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data.
    Poznyakovskiy AA; Zahnert T; Kalaidzidis Y; Schmidt R; Fischer B; Baumgart J; Yarin YM
    Hear Res; 2008 Sep; 243(1-2):95-104. PubMed ID: 18625296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normative inner ear volumetric measurements.
    Teixido MT; Kirkilas G; Seymour P; Sem K; Iaia A; Sabra O; Isildak H
    J Craniofac Surg; 2015 Jan; 26(1):251-4. PubMed ID: 25490572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual perception of the osseous labyrinth rendered from micro-CT scans of the petrous bone.
    Skrzat J; Tarasiuk J; Wroński S; Kozerska M
    Folia Med Cracov; 2017; 57(4):5-12. PubMed ID: 29337973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The value of non-reconstructive multiplanar CT for the evaluation of the petrous bone.
    Zonneveld FW
    Neuroradiology; 1983; 25(1):1-10. PubMed ID: 6602304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vestibular Aging Process from 3D Physiological Imaging of the Membranous Labyrinth.
    Tanioka H; Tanioka S; Kaga K
    Sci Rep; 2020 Jun; 10(1):9618. PubMed ID: 32541659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution X-ray tomography of the human inner ear: synchrotron radiation-based study of nerve fibre bundles, membranes and ganglion cells.
    Lareida A; Beckmann F; Schrott-Fischer A; Glueckert R; Freysinger W; Müller B
    J Microsc; 2009 Apr; 234(1):95-102. PubMed ID: 19335460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study.
    Schulz-Mirbach T; Heß M; Metscher BD; Ladich F
    BMC Biol; 2013 Jul; 11():75. PubMed ID: 23826967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomography in inner and middle ear malformations: value, limits, results.
    Reisner K
    Radiology; 1969 Jan; 92(1):11-20. PubMed ID: 5303921
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.