BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17503369)

  • 1. Composition of metabolic flux distributions by functionally interpretable minimal flux modes (MinModes).
    Hoffmann S; Hoppe A; Holzhütter HG
    Genome Inform; 2006; 17(1):195-207. PubMed ID: 17503369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design of reduced metabolic networks.
    Holzhütter S; Holzhütter HG
    Chembiochem; 2004 Oct; 5(10):1401-22. PubMed ID: 15457535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry.
    Van Dien SJ; Strovas T; Lidstrom ME
    Biotechnol Bioeng; 2003 Oct; 84(1):45-55. PubMed ID: 12910542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.
    Holzhütter HG
    Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks.
    Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S
    Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering metabolic objectives pursued by changes of enzyme levels.
    Hoffmann S; Holzhütter HG
    Ann N Y Acad Sci; 2009 Mar; 1158():57-70. PubMed ID: 19348632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1.
    Fu Y; Beck DA; Lidstrom ME
    BMC Microbiol; 2016 Jul; 16(1):156. PubMed ID: 27435978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organising metabolic networks: Cycles in flux distributions.
    Kritz MV; Trindade Dos Santos M; Urrutia S; Schwartz JM
    J Theor Biol; 2010 Aug; 265(3):250-60. PubMed ID: 20435049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic network structure determines key aspects of functionality and regulation.
    Stelling J; Klamt S; Bettenbrock K; Schuster S; Gilles ED
    Nature; 2002 Nov; 420(6912):190-3. PubMed ID: 12432396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism.
    Van Dien SJ; Lidstrom ME
    Biotechnol Bioeng; 2002 May; 78(3):296-312. PubMed ID: 11920446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens AM1 growth as validation.
    Ao P; Lee LW; Lidstrom ME; Yin L; Zhu X
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):980-94. PubMed ID: 18807980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments.
    Nöh K; Grönke K; Luo B; Takors R; Oldiges M; Wiechert W
    J Biotechnol; 2007 Apr; 129(2):249-67. PubMed ID: 17207877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes.
    Schwartz JM; Kanehisa M
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii204-5. PubMed ID: 16204104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth.
    Skovran E; Crowther GJ; Guo X; Yang S; Lidstrom ME
    PLoS One; 2010 Nov; 5(11):e14091. PubMed ID: 21124828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pruning genome-scale metabolic models to consistent ad functionem networks.
    Hoffmann S; Hoppe A; Holzhütter HG
    Genome Inform; 2007; 18():308-19. PubMed ID: 18546498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments.
    Burgard AP; Vaidyaraman S; Maranas CD
    Biotechnol Prog; 2001; 17(5):791-7. PubMed ID: 11587566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1.
    Peyraud R; Schneider K; Kiefer P; Massou S; Vorholt JA; Portais JC
    BMC Syst Biol; 2011 Nov; 5():189. PubMed ID: 22074569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
    Lee J; Yun H; Feist AM; Palsson BØ; Lee SY
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):849-62. PubMed ID: 18758767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization-based framework for inferring and testing hypothesized metabolic objective functions.
    Burgard AP; Maranas CD
    Biotechnol Bioeng; 2003 Jun; 82(6):670-7. PubMed ID: 12673766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.