These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 17503398)

  • 1. Protein topology classification using two-stage support vector machines.
    Gubbi J; Shilton A; Parker M; Palaniswami M
    Genome Inform; 2006; 17(2):259-69. PubMed ID: 17503398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein structural classes using support vector machines.
    Sun XD; Huang RB
    Amino Acids; 2006 Jun; 30(4):469-75. PubMed ID: 16622605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QBES: predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization.
    Xu Z; Zhang C; Liu S; Zhou Y
    Proteins; 2006 Jun; 63(4):961-6. PubMed ID: 16514609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and analysis of beta-turns in proteins by support vector machine.
    Pham TH; Satou K; Ho TB
    Genome Inform; 2003; 14():196-205. PubMed ID: 15706534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein relative solvent accessibility with a two-stage SVM approach.
    Nguyen MN; Rajapakse JC
    Proteins; 2005 Apr; 59(1):30-7. PubMed ID: 15696542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining prediction of secondary structure and solvent accessibility in proteins.
    Adamczak R; Porollo A; Meller J
    Proteins; 2005 May; 59(3):467-75. PubMed ID: 15768403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure.
    Garg A; Kaur H; Raghava GP
    Proteins; 2005 Nov; 61(2):318-24. PubMed ID: 16106377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative view of protein fold space.
    Shindyalov IN; Bourne PE
    Proteins; 2000 Feb; 38(3):247-60. PubMed ID: 10713986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-grained protein fold assignment by support vector machines using generalized npeptide coding schemes and jury voting from multiple-parameter sets.
    Yu CS; Wang JY; Yang JM; Lyu PC; Lin CJ; Hwang JK
    Proteins; 2003 Mar; 50(4):531-6. PubMed ID: 12577258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function.
    Lo A; Chiu HS; Sung TY; Lyu PC; Hsu WL
    J Proteome Res; 2008 Feb; 7(2):487-96. PubMed ID: 18081245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-class support vector machines for protein secondary structure prediction.
    Nguyen MN; Rajapakse JC
    Genome Inform; 2003; 14():218-27. PubMed ID: 15706536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein solvent accessibility using support vector machines.
    Yuan Z; Burrage K; Mattick JS
    Proteins; 2002 Aug; 48(3):566-70. PubMed ID: 12112679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of sequence and structure-based datasets for nonredundant structural data mining.
    Chu CK; Feng LL; Wouters MA
    Proteins; 2005 Sep; 60(4):577-83. PubMed ID: 16001417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Better prediction of the location of alpha-turns in proteins with support vector machine.
    Wang Y; Xue Z; Xu J
    Proteins; 2006 Oct; 65(1):49-54. PubMed ID: 16894602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach.
    Lin HH; Han LY; Zhang HL; Zheng CJ; Xie B; Cao ZW; Chen YZ
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S13. PubMed ID: 17254297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.