BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17503399)

  • 1. Robotic path planning and protein complex modeling considering low frequency intra-molecular loop and domain motions.
    Del Carpio CA; Qiang P; Ichiishi E; Tsuboi H; Koyama M; Hatakeyama N; Endou A; Takaba H; Kubo M; Miyamoto A
    Genome Inform; 2006; 17(2):270-8. PubMed ID: 17503399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A graph theoretical approach for analysis of protein flexibility change at protein complex formation.
    Del Carpio M CA; Shaikh AR; Ichiishi E; Koyama M; Kubo M; Nishijima K; Miyamoto A
    Genome Inform; 2005; 16(2):148-60. PubMed ID: 16901098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIAX: a new paradigm for modeling biomacromolecular interactions and complex formation in condensed phases.
    Del Carpio-Muñoz CA; Ichiishi E; Yoshimori A; Yoshikawa T
    Proteins; 2002 Sep; 48(4):696-732. PubMed ID: 12211037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A path planning approach for computing large-amplitude motions of flexible molecules.
    Cortés J; Siméon T; Ruiz de Angulo V; Guieysse D; Remaud-Siméon M; Tran V
    Bioinformatics; 2005 Jun; 21 Suppl 1():i116-25. PubMed ID: 15961448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible protein-protein docking based on Best-First search algorithm.
    Noy E; Goldblum A
    J Comput Chem; 2010 Jul; 31(9):1929-43. PubMed ID: 20087902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RosettaDock in CAPRI rounds 6-12.
    Wang C; Schueler-Furman O; Andre I; London N; Fleishman SJ; Bradley P; Qian B; Baker D
    Proteins; 2007 Dec; 69(4):758-63. PubMed ID: 17671979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach.
    Gohlke H; Kuhn LA; Case DA
    Proteins; 2004 Aug; 56(2):322-37. PubMed ID: 15211515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docking unbound proteins with MIAX: a novel algorithm for protein-protein soft docking.
    Del Carpio Munoz CA; Peissker T; Yoshimori A; Ichiishi E
    Genome Inform; 2003; 14():238-49. PubMed ID: 15706538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methodology for efficiently sampling the conformation space of molecular structures.
    Lee A; Streinu I; Brock O
    Phys Biol; 2005 Nov; 2(4):S108-15. PubMed ID: 16280616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes.
    Karaca E; Bonvin AM
    Structure; 2011 Apr; 19(4):555-65. PubMed ID: 21481778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible protein-protein docking.
    Bonvin AM
    Curr Opin Struct Biol; 2006 Apr; 16(2):194-200. PubMed ID: 16488145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EADock: docking of small molecules into protein active sites with a multiobjective evolutionary optimization.
    Grosdidier A; Zoete V; Michielin O
    Proteins; 2007 Jun; 67(4):1010-25. PubMed ID: 17380512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MIAX: a system for assessment of macromolecular interaction. 3) A parallel hybrid GA for flexible protein docking.
    Del Carpio CA; Yoshimori A
    Genome Inform Ser Workshop Genome Inform; 2000; 11():205-14. PubMed ID: 11700601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of protein flexibility on protein-protein docking.
    Ehrlich LP; Nilges M; Wade RC
    Proteins; 2005 Jan; 58(1):126-33. PubMed ID: 15515181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-protein docking by simulating the process of association subject to biochemical constraints.
    Motiejunas D; Gabdoulline R; Wang T; Feldman-Salit A; Johann T; Winn PJ; Wade RC
    Proteins; 2008 Jun; 71(4):1955-69. PubMed ID: 18186463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Docking macromolecules with flexible segments.
    Bastard K; Thureau A; Lavery R; Prévost C
    J Comput Chem; 2003 Nov; 24(15):1910-20. PubMed ID: 14515373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein docking with backbone flexibility.
    Wang C; Bradley P; Baker D
    J Mol Biol; 2007 Oct; 373(2):503-19. PubMed ID: 17825317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.