These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 17503787)

  • 1. Quantum chemical study of the mechanism of action of vitamin K carboxylase (VKC). IV. Intermediates and transition states.
    Davis CH; Ii DD; Stafford DW; Pedersen LG
    J Phys Chem A; 2007 Aug; 111(31):7257-61. PubMed ID: 17503787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantum chemical study of the mechanism of action of Vitamin K carboxylase (VKC) III. Intermediates and transition states.
    Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG
    J Mol Graph Model; 2007 Sep; 26(2):409-14. PubMed ID: 17182265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hetero-dimer model for concerted action of vitamin K carboxylase and vitamin K reductase in vitamin K cycle.
    Wu S; Liu S; Davis CH; Stafford DW; Kulman JD; Pedersen LG
    J Theor Biol; 2011 Jun; 279(1):143-9. PubMed ID: 21453708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states.
    Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG
    J Mol Graph Model; 2007 Sep; 26(2):401-8. PubMed ID: 17182266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent findings in understanding the biological function of vitamin K.
    Uotila L; Suttie JW
    Med Biol; 1982 Feb; 60(1):16-24. PubMed ID: 6803084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the coupling mechanism of the vitamin K-dependent carboxylase: mutation of histidine 160 disrupts glutamic acid carbanion formation and efficient coupling of vitamin K epoxidation to glutamic acid carboxylation.
    Rishavy MA; Berkner KL
    Biochemistry; 2008 Sep; 47(37):9836-46. PubMed ID: 18717596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The propeptide of the vitamin K-dependent carboxylase substrate accelerates formation of the gamma-glutamyl carbanion intermediate.
    Li S; Furie BC; Furie B; Walsh CT
    Biochemistry; 1997 May; 36(21):6384-90. PubMed ID: 9174354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism of the vitamin K-dependent glutamate carboxylase: a computational study.
    Silva PJ; Ramos MJ
    J Phys Chem B; 2007 Nov; 111(44):12883-7. PubMed ID: 17935315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolic role of vitamin K.
    Suttie JW
    Fed Proc; 1980 Aug; 39(10):2730-5. PubMed ID: 7409197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the propeptide and gamma-glutamic acid domain of factor IX for in vitro carboxylation by the vitamin K-dependent carboxylase.
    Stanley TB; Wu SM; Houben RJ; Mutucumarana VP; Stafford DW
    Biochemistry; 1998 Sep; 37(38):13262-8. PubMed ID: 9748333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamyl substrate-induced exposure of a free cysteine residue in the vitamin K-dependent gamma-glutamyl carboxylase is critical for vitamin K epoxidation.
    Bouchard BA; Furie B; Furie BC
    Biochemistry; 1999 Jul; 38(29):9517-23. PubMed ID: 10413529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid.
    Furie B; Bouchard BA; Furie BC
    Blood; 1999 Mar; 93(6):1798-808. PubMed ID: 10068650
    [No Abstract]   [Full Text] [Related]  

  • 13. Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acid.
    Suttie JW
    CRC Crit Rev Biochem; 1980; 8(2):191-223. PubMed ID: 6772376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin K-dependent carboxylase. Demonstration of a vitamin K- and O2-dependent exchange of 3H from 3H2O into glutamic acid residues.
    McTigue JJ; Suttie JW
    J Biol Chem; 1983 Oct; 258(20):12129-31. PubMed ID: 6138349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescent method to determine vitamin K-dependent gamma-glutamyl carboxylase activity.
    Kaesler N; Schettgen T; Mutucumarana VP; Brandenburg V; Jahnen-Dechent W; Schurgers LJ; Krüger T
    Anal Biochem; 2012 Feb; 421(2):411-6. PubMed ID: 22210513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Chemical Study of the Mechanism of Action of Vitamin K Carboxylase in Solvent.
    Wu S; Liu S; Davis CH; Stafford DW; Pedersen LG
    Int J Quantum Chem; 2010 Dec; 110(15):2744-2751. PubMed ID: 21892230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Gas-6 and protein S: vitamin K-dependent factors and ligands for the TAM tyrosine kinase receptors family].
    Benzakour O; Gely A; Lara R; Coronas V
    Med Sci (Paris); 2007 Oct; 23(10):826-33. PubMed ID: 17937890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The function and metabolism of vitamin K.
    Olson RE
    Annu Rev Nutr; 1984; 4():281-337. PubMed ID: 6380538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vitamin K-dependent carboxylase generates γ-carboxylated glutamates by using CO2 to facilitate glutamate deprotonation in a concerted mechanism that drives catalysis.
    Rishavy MA; Hallgren KW; Berkner KL
    J Biol Chem; 2011 Dec; 286(52):44821-32. PubMed ID: 21896484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of action of vitamin K.
    Dowd P; Ham SW; Naganathan S; Hershline R
    Annu Rev Nutr; 1995; 15():419-40. PubMed ID: 8527228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.