BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17503798)

  • 1. Relative specificities of water and ammonia losses from backbone fragments in collision-activated dissociation.
    Savitski MM; Kjeldsen F; Nielsen ML; Zubarev RA
    J Proteome Res; 2007 Jul; 6(7):2669-73. PubMed ID: 17503798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deriving the probabilities of water loss and ammonia loss for amino acids from tandem mass spectra.
    Sun S; Yu C; Qiao Y; Lin Y; Dong G; Liu C; Zhang J; Zhang Z; Cai J; Zhang H; Bu D
    J Proteome Res; 2008 Jan; 7(1):202-8. PubMed ID: 18092745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of c1 fragment ions in collision-induced dissociation of glutamine-containing peptide ions: a tip for de novo sequencing.
    Lee YJ; Lee YM
    Rapid Commun Mass Spectrom; 2004; 18(18):2069-76. PubMed ID: 15378720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem mass spectrometry of amidated peptides.
    Mouls L; Subra G; Aubagnac JL; Martinez J; Enjalbal C
    J Mass Spectrom; 2006 Nov; 41(11):1470-83. PubMed ID: 17072914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutral loss of amino acid residues from protonated peptides in collision-induced dissociation generates N- or C-terminal sequence ladders.
    Salek M; Lehmann WD
    J Mass Spectrom; 2003 Nov; 38(11):1143-9. PubMed ID: 14648821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Side-chain losses in electron capture dissociation to improve peptide identification.
    Savitski MM; Nielsen ML; Zubarev RA
    Anal Chem; 2007 Mar; 79(6):2296-302. PubMed ID: 17274597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of carboxyamidomethyl cysteine may add complexity to protein identification.
    Yagüe J; Núñez A; Boix M; Esteller M; Alfonso P; Casal JI
    Proteomics; 2005 Jul; 5(11):2761-8. PubMed ID: 15966008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical utility of small neutral losses from reduced species in electron capture dissociation studied using SwedECD database.
    Fälth M; Savitski MM; Nielsen ML; Kjeldsen F; Andren PE; Zubarev RA
    Anal Chem; 2008 Nov; 80(21):8089-94. PubMed ID: 18837516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequencing of the thirteen structurally isomeric quartets of N-terminal dipeptide motifs in peptides by collision-induced dissociation.
    Winter D; Lehmann WD
    Proteomics; 2009 Apr; 9(8):2076-84. PubMed ID: 19322779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using statistical models to identify factors that have a role in defining the abundance of ions produced by tandem MS.
    Barton SJ; Richardson S; Perkins DN; Bellahn I; Bryant TN; Whittaker JC
    Anal Chem; 2007 Aug; 79(15):5601-7. PubMed ID: 17579495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gln-Gly cleavage: a dominant dissociation site in the fragmentation of protonated peptides.
    Jonsson AP; Bergman T; Jörnvall H; Griffiths WJ
    Rapid Commun Mass Spectrom; 2001; 15(9):713-20. PubMed ID: 11319794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro-CrossLink. Software tool for protein cross-linking and mass spectrometry.
    Gao Q; Xue S; Doneanu CE; Shaffer SA; Goodlett DR; Nelson SD
    Anal Chem; 2006 Apr; 78(7):2145-9. PubMed ID: 16579592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of mass spectral data obtained from singly protonated peptides under high-energy collision-induced dissociation conditions.
    van Dongen WD; Ruijters HF; Luinge HJ; Heerma W; Haverkamp J
    J Mass Spectrom; 1996 Oct; 31(10):1156-62. PubMed ID: 8916424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disulfide bond cleavages observed in SORI-CID of three nonapeptides complexed with divalent transition-metal cations.
    Mihalca R; van der Burgt YE; Heck AJ; Heeren RM
    J Mass Spectrom; 2007 Apr; 42(4):450-8. PubMed ID: 17295413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the interaction of peptides with calcium ions as studied by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry: towards peptide fishing using metal ion baits.
    Jobst KJ; Terlouw JK; Luider TM; Burgers PC
    Anal Chim Acta; 2008 Oct; 627(1):136-47. PubMed ID: 18790137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a designed peptide array to infer dissociation trends for nontryptic peptides in quadrupole ion trap and quadrupole time-of-flight mass spectrometry.
    Gaucher SP; Morrow JA; Faulon JL
    Anal Chem; 2007 Oct; 79(20):7822-30. PubMed ID: 17854158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein primary structure using orthogonal fragmentation techniques in Fourier transform mass spectrometry.
    Zubarev R
    Expert Rev Proteomics; 2006 Apr; 3(2):251-61. PubMed ID: 16608437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides.
    Manea M; Mezo G; Hudecz F; Przybylski M
    J Pept Sci; 2007 Apr; 13(4):227-36. PubMed ID: 17394121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric differentiation of linear peptides composed of L-amino acids from isomers containing one D-amino acid residue.
    Serafin SV; Maranan R; Zhang K; Morton TH
    Anal Chem; 2005 Sep; 77(17):5480-7. PubMed ID: 16131056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry.
    Chen SH; Hsu JL; Lin FS
    Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.