These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 1750380)
1. Electron microscopic and histochemical studies of the mononuclear osteoclast of the mouse. Domon T; Wakita M Am J Anat; 1991 Sep; 192(1):35-44. PubMed ID: 1750380 [TBL] [Abstract][Full Text] [Related]
2. Electron microscopic and histochemical studies of the mononuclear odontoclast of the human. Domon T; Sugaya K; Yawaka Y; Osanai M; Hanaizumi Y; Takahashi S; Wakita M Anat Rec; 1994 Sep; 240(1):42-51. PubMed ID: 7810914 [TBL] [Abstract][Full Text] [Related]
3. The three-dimensional structure of the clear zone of a cultured osteoclast. Domon T; Wakita M J Electron Microsc (Tokyo); 1991 Feb; 40(1):34-40. PubMed ID: 1865157 [TBL] [Abstract][Full Text] [Related]
4. Multinucleated cells formed on calcified dentine from mouse bone marrow cells treated with 1 alpha,25-dihydroxyvitamin D3 have ruffled borders and resorb dentine. Sasaki T; Takahashi N; Higashi S; Suda T Anat Rec; 1989 Jul; 224(3):379-91. PubMed ID: 2782622 [TBL] [Abstract][Full Text] [Related]
5. Histochemical and ultrastructural studies of cartilage resorption and acid phosphatase activity during antler growth in fallow deer (Dama dama). Szuwart T; Kierdorf H; Kierdorf U; Clemen G Anat Rec; 2002 Sep; 268(1):66-72. PubMed ID: 12209566 [TBL] [Abstract][Full Text] [Related]
6. [Osteoclasts and tartrate-resistant acid phosphatase-positive mononuclear cells in the mouse femur: a histochemical study]. Hasegawa K Hokkaido Igaku Zasshi; 1994 Jan; 69(1):72-83. PubMed ID: 8119660 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional distribution of the clear zone of migrating osteoclasts on dentin slices in vitro. Domon T; Yamazaki Y; Fukui A; Ohnishi Y; Takahashi S; Yamamoto T; Wakita M Tissue Cell; 2002 Oct; 34(5):326-36. PubMed ID: 12270259 [TBL] [Abstract][Full Text] [Related]
8. Tetracycline administration normalizes the structure and acid phosphatase activity of osteoclasts in streptozotocin-induced diabetic rats. Kaneko H; Sasaki T; Ramamurthy NS; Golub LM Anat Rec; 1990 Aug; 227(4):427-36. PubMed ID: 2168133 [TBL] [Abstract][Full Text] [Related]
9. Ultrastructural localization of tartrate-resistant, purple acid phosphatase in rat osteoclasts by histochemistry and immunocytochemistry. Clark SA; Ambrose WW; Anderson TR; Terrell RS; Toverud SU J Bone Miner Res; 1989 Jun; 4(3):399-405. PubMed ID: 2763875 [TBL] [Abstract][Full Text] [Related]
10. Osteoclast formation in vitro from progenitor cells present in the adult mouse circulation. Helfrich MH; Mieremet RH; Thesingh CW J Bone Miner Res; 1989 Jun; 4(3):325-34. PubMed ID: 2763871 [TBL] [Abstract][Full Text] [Related]
11. Ruffled border of osteoclast: its three dimensional ultrastructure. Segawa K; Egawa K; Kokatsu H; Sasaki T Showa Shigakkai Zasshi; 1989 Sep; 9(3):330-4. PubMed ID: 2518146 [TBL] [Abstract][Full Text] [Related]
12. Cytodifferentiation of the odontoclast prior to the shedding of human deciduous teeth: an ultrastructural and cytochemical study. Sahara N; Toyoki A; Ashizawa Y; Deguchi T; Suzuki K Anat Rec; 1996 Jan; 244(1):33-49. PubMed ID: 8838422 [TBL] [Abstract][Full Text] [Related]
13. Comparison of multinucleated cells elicited in rats by particulate bone, polyethylene, or polymethylmethacrylate. Glowacki J; Jasty M; Goldring S J Bone Miner Res; 1986 Aug; 1(4):327-31. PubMed ID: 3503546 [TBL] [Abstract][Full Text] [Related]
14. The preosteoclast and its cytodifferentiation into the osteoclast: ultrastructural and histochemical studies of rat fetal parietal bone. Ejiri S Arch Histol Jpn; 1983 Sep; 46(4):533-57. PubMed ID: 6661003 [TBL] [Abstract][Full Text] [Related]
15. Tartrate-resistant acid phosphatase activity in tibial osteoclasts and cells elicited by ectopic bone and suture implants in normal and osteopetrotic rats. Walters LM; Schneider GB Bone Miner; 1988 Apr; 4(1):49-62. PubMed ID: 3056541 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructural study of cell-cell interaction between osteoclasts and osteoblasts/stroma cells in vitro. Domon T; Yamazaki Y; Fukui A; Ohnishi Y; Takahashi S; Yamamoto T; Wakita M Ann Anat; 2002 May; 184(3):221-7. PubMed ID: 12056751 [TBL] [Abstract][Full Text] [Related]
17. The effect of tartrate on bone cell acid phosphatase activity: a quantitative cytochemical study. Webber D; Braidman IP; Robertson WR; Anderson DC J Bone Miner Res; 1989 Dec; 4(6):809-15. PubMed ID: 2610018 [TBL] [Abstract][Full Text] [Related]
18. Morphological and histochemical comparison of the cells elicited by ectopic bone implants and tibial osteoclasts. Kelly JD; Schneider GB Am J Anat; 1991 Sep; 192(1):45-54. PubMed ID: 1750381 [TBL] [Abstract][Full Text] [Related]
19. Different tartrate sensitivity and pH optimum for two isoenzymes of acid phosphatase in osteoclasts. An electron-microscopic enzyme-cytochemical study. Akisaka T; Subita GP; Kawaguchi H; Shigenaga Y Cell Tissue Res; 1989 Jan; 255(1):69-76. PubMed ID: 2661005 [TBL] [Abstract][Full Text] [Related]
20. Neonatal changes of osteoclasts in osteopetrosis (op/op) mice defective in production of functional macrophage colony-stimulating factor (M-CSF) protein and effects of M-CSF on osteoclast development and differentiation. Umeda S; Takahashi K; Naito M; Shultz LD; Takagi K J Submicrosc Cytol Pathol; 1996 Jan; 28(1):13-26. PubMed ID: 8929623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]