BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17503802)

  • 1. Catalytic mechanism and metal specificity of bacterial peptide deformylase: a density functional theory QM/MM study.
    Xiao C; Zhang Y
    J Phys Chem B; 2007 Jun; 111(22):6229-35. PubMed ID: 17503802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the catalytic mechanism and metal-ion dependence of peptide deformylase.
    Wu XH; Quan JM; Wu YD
    J Phys Chem B; 2007 Jun; 111(22):6236-44. PubMed ID: 17497768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origins of the different metal preferences of Escherichia coli peptide deformylase and Bacillus thermoproteolyticus thermolysin: a comparative quantum mechanical/molecular mechanical study.
    Dong M; Liu H
    J Phys Chem B; 2008 Aug; 112(33):10280-90. PubMed ID: 18651766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron center, substrate recognition and mechanism of peptide deformylase.
    Becker A; Schlichting I; Kabsch W; Groche D; Schultz S; Wagner AF
    Nat Struct Biol; 1998 Dec; 5(12):1053-8. PubMed ID: 9846875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the metal ion in formyl-peptide bond hydrolysis by a peptide deformylase active site model.
    Leopoldini M; Russo N; Toscano M
    J Phys Chem B; 2006 Jan; 110(2):1063-72. PubMed ID: 16471643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of E. coli peptide deformylase bound to formate: insight into the preference for Fe2+ over Zn2+ as the active site metal.
    Jain R; Hao B; Liu RP; Chan MK
    J Am Chem Soc; 2005 Apr; 127(13):4558-9. PubMed ID: 15796505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site.
    Groche D; Becker A; Schlichting I; Kabsch W; Schultz S; Wagner AF
    Biochem Biophys Res Commun; 1998 May; 246(2):342-6. PubMed ID: 9610360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of zinc-containing peptide deformylase from Leptospira interrogans by X-ray absorption near-edge spectroscopy.
    Li S; Zhou Z; Chu W; Gong W; Benfatto M; Hu T; Xie Y; Xian D; Wu Z
    J Synchrotron Radiat; 2005 Jan; 12(Pt 1):111-4. PubMed ID: 15616374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133.
    Rajagopalan PT; Grimme S; Pei D
    Biochemistry; 2000 Feb; 39(4):779-90. PubMed ID: 10651644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics and density functional theory studies of substrate binding and catalysis of human brain aspartoacylase.
    Zhang CH; Gao JY; Chen ZQ; Xue Y
    J Mol Graph Model; 2010 Jun; 28(8):799-806. PubMed ID: 20227313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase.
    Nguyen KT; Wu JC; Boylan JA; Gherardini FC; Pei D
    Arch Biochem Biophys; 2007 Dec; 468(2):217-25. PubMed ID: 17977509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H; Brothers EN; Merz KM
    J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic deactivation by a dizinc beta-lactamase: mechanistic insights from QM/MM and DFT studies.
    Xu D; Guo H; Cui Q
    J Am Chem Soc; 2007 Sep; 129(35):10814-22. PubMed ID: 17691780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Which one among Zn(II), Co(II), Mn(II), and Fe(II) is the most efficient ion for the methionine aminopeptidase catalyzed reaction?
    Leopoldini M; Russo N; Toscano M
    J Am Chem Soc; 2007 Jun; 129(25):7776-84. PubMed ID: 17523636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-cleaving catalyst selective for peptide deformylase.
    Chae PS; Kim MS; Jeung CS; Lee SD; Park H; Lee S; Suh J
    J Am Chem Soc; 2005 Mar; 127(8):2396-7. PubMed ID: 15724986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the Ni(II) complex of Escherichia coli peptide deformylase and suggestions on deformylase activities depending on different metal(II) centres.
    Yen NT; Bogdanović X; Palm GJ; Kühl O; Hinrichs W
    J Biol Inorg Chem; 2010 Feb; 15(2):195-201. PubMed ID: 20112455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate triester hydrolysis promoted by an N2S(thiolate)Zn complex: mechanistic implications for the metal-dependent reactivity of peptide deformylase.
    Goldberg DP; diTargiani RC; Namuswe F; Minnihan EC; Chang S; Zakharov LN; Rheingold AL
    Inorg Chem; 2005 Oct; 44(21):7559-69. PubMed ID: 16212382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and catalytic diversity within the amidohydrolase superfamily.
    Seibert CM; Raushel FM
    Biochemistry; 2005 May; 44(17):6383-91. PubMed ID: 15850372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases.
    Greco C; Bruschi M; De Gioia L; Ryde U
    Inorg Chem; 2007 Jul; 46(15):5911-21. PubMed ID: 17602468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.