These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 17504465)
1. Projected ecosystem impact of the Prairie Heating and CO2 Enrichment experiment. Parton WJ; Morgan JA; Wang G; Del Grosso S New Phytol; 2007; 174(4):823-834. PubMed ID: 17504465 [TBL] [Abstract][Full Text] [Related]
2. Gross primary production responses to warming, elevated CO Ryan EM; Ogle K; Peltier D; Walker AP; De Kauwe MG; Medlyn BE; Williams DG; Parton W; Asao S; Guenet B; Harper AB; Lu X; Luus KA; Zaehle S; Shu S; Werner C; Xia J; Pendall E Glob Chang Biol; 2017 Aug; 23(8):3092-3106. PubMed ID: 27992952 [TBL] [Abstract][Full Text] [Related]
3. Climate warming alters photosynthetic responses to elevated CO Sage E; Heisler-White J; Morgan J; Pendall E; Williams DG Am J Bot; 2020 Sep; 107(9):1238-1252. PubMed ID: 32931042 [TBL] [Abstract][Full Text] [Related]
4. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide. Pendall E; Heisler-White JL; Williams DG; Dijkstra FA; Carrillo Y; Morgan JA; Lecain DR PLoS One; 2013; 8(8):e71921. PubMed ID: 23977180 [TBL] [Abstract][Full Text] [Related]
5. Elevated CO Yu H; Deng Y; He Z; Van Nostrand JD; Wang S; Jin D; Wang A; Wu L; Wang D; Tai X; Zhou J Front Microbiol; 2018; 9():1790. PubMed ID: 30154760 [TBL] [Abstract][Full Text] [Related]
6. Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland. Blumenthal DM; Kray JA; Ortmans W; Ziska LH; Pendall E Glob Chang Biol; 2016 Sep; 22(9):3026-38. PubMed ID: 27090757 [TBL] [Abstract][Full Text] [Related]
7. Disentangling root responses to climate change in a semiarid grassland. Carrillo Y; Dijkstra FA; LeCain D; Morgan JA; Blumenthal D; Waldron S; Pendall E Oecologia; 2014 Jun; 175(2):699-711. PubMed ID: 24643718 [TBL] [Abstract][Full Text] [Related]
8. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Morgan JA; Pataki DE; Körner C; Clark H; Del Grosso SJ; Grünzweig JM; Knapp AK; Mosier AR; Newton PC; Niklaus PA; Nippert JB; Nowak RS; Parton WJ; Polley HW; Shaw MR Oecologia; 2004 Jun; 140(1):11-25. PubMed ID: 15156395 [TBL] [Abstract][Full Text] [Related]
9. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO De Kauwe MG; Medlyn BE; Walker AP; Zaehle S; Asao S; Guenet B; Harper AB; Hickler T; Jain AK; Luo Y; Lu X; Luus K; Parton WJ; Shu S; Wang YP; Werner C; Xia J; Pendall E; Morgan JA; Ryan EM; Carrillo Y; Dijkstra FA; Zelikova TJ; Norby RJ Glob Chang Biol; 2017 Sep; 23(9):3623-3645. PubMed ID: 28145053 [TBL] [Abstract][Full Text] [Related]
10. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Dijkstra FA; Morgan JA; Follett RF; Lecain DR Glob Chang Biol; 2013 Jun; 19(6):1816-26. PubMed ID: 23505264 [TBL] [Abstract][Full Text] [Related]
11. Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO Ryan EM; Ogle K; Zelikova TJ; LeCain DR; Williams DG; Morgan JA; Pendall E Glob Chang Biol; 2015 Jul; 21(7):2588-2602. PubMed ID: 25711935 [TBL] [Abstract][Full Text] [Related]
12. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. Dijkstra FA; Pendall E; Morgan JA; Blumenthal DM; Carrillo Y; LeCain DR; Follett RF; Williams DG New Phytol; 2012 Nov; 196(3):807-815. PubMed ID: 23005343 [TBL] [Abstract][Full Text] [Related]
13. Experimental fire increases soil carbon dioxide efflux in a grassland long-term multifactor global change experiment. Strong AL; Johnson TP; Chiariello NR; Field CB Glob Chang Biol; 2017 May; 23(5):1975-1987. PubMed ID: 27859942 [TBL] [Abstract][Full Text] [Related]
14. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. Dijkstra FA; Blumenthal D; Morgan JA; Pendall E; Carrillo Y; Follett RF New Phytol; 2010 Jul; 187(2):426-437. PubMed ID: 20487311 [TBL] [Abstract][Full Text] [Related]
15. Elevated CO Black CK; Davis SC; Hudiburg TW; Bernacchi CJ; DeLucia EH Glob Chang Biol; 2017 Jan; 23(1):435-445. PubMed ID: 27252041 [TBL] [Abstract][Full Text] [Related]
16. Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years. McMurtrie RE; Medlyn BE; Dewar RC Tree Physiol; 2001 Aug; 21(12-13):831-9. PubMed ID: 11498330 [TBL] [Abstract][Full Text] [Related]
17. Soil disturbance and invasion magnify CO Blumenthal DM; Carrillo Y; Kray JA; Parsons MC; Morgan JA; Pendall E Glob Chang Biol; 2022 Nov; 28(22):6741-6751. PubMed ID: 36093790 [TBL] [Abstract][Full Text] [Related]
18. Shifting plant species composition in response to climate change stabilizes grassland primary production. Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319 [TBL] [Abstract][Full Text] [Related]
19. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture. Li FY; Newton PC; Lieffering M Glob Chang Biol; 2014 Jan; 20(1):228-39. PubMed ID: 23959970 [TBL] [Abstract][Full Text] [Related]