BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 17504982)

  • 1. Microtubule-associated proteins as targets in cancer chemotherapy.
    Bhat KM; Setaluri V
    Clin Cancer Res; 2007 May; 13(10):2849-54. PubMed ID: 17504982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the mitotic spindle--potential therapeutic targets.
    Miyamoto DT; Perlman ZE; Mitchison TJ; Shirasu-Hiza M
    Prog Cell Cycle Res; 2003; 5():349-60. PubMed ID: 14593729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule assembly dynamics: an attractive target for anticancer drugs.
    Singh P; Rathinasamy K; Mohan R; Panda D
    IUBMB Life; 2008 Jun; 60(6):368-75. PubMed ID: 18384115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule alterations and resistance to tubulin-binding agents (review).
    Drukman S; Kavallaris M
    Int J Oncol; 2002 Sep; 21(3):621-8. PubMed ID: 12168109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting survivin in cancer: patent review.
    Kanwar JR; Kamalapuram SK; Kanwar RK
    Expert Opin Ther Pat; 2010 Dec; 20(12):1723-37. PubMed ID: 21083520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival and apoptotic signals in the action of microtubule-targeting antitumor drugs.
    Mollinedo F
    IDrugs; 2005 Feb; 8(2):127-43. PubMed ID: 15696415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment.
    Emanuele MJ; Stukenberg PT
    Cell; 2007 Sep; 130(5):893-905. PubMed ID: 17803911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor suppressor interactions with microtubules: keeping cell polarity and cell division on track.
    Hernandez P; Tirnauer JS
    Dis Model Mech; 2010; 3(5-6):304-15. PubMed ID: 20427559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New microtubule/tubulin-targeted anticancer drugs and novel chemotherapeutic strategies.
    Wilson L; Jordan MA
    J Chemother; 2004 Nov; 16 Suppl 4():83-5. PubMed ID: 15688618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic stabilization of microtubule dynamics by estramustine is associated with tubulin acetylation, spindle abnormalities, and mitotic arrest.
    Mohan R; Panda D
    Cancer Res; 2008 Aug; 68(15):6181-9. PubMed ID: 18676841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational targeting of Notch signaling in cancer.
    Rizzo P; Osipo C; Foreman K; Golde T; Osborne B; Miele L
    Oncogene; 2008 Sep; 27(38):5124-31. PubMed ID: 18758481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel oral indoline-sulfonamide agent, N-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-isonicotinamide (J30), exhibits potent activity against human cancer cells in vitro and in vivo through the disruption of microtubule.
    Liou JP; Hsu KS; Kuo CC; Chang CY; Chang JY
    J Pharmacol Exp Ther; 2007 Oct; 323(1):398-405. PubMed ID: 17660383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubules: a dynamic target in cancer therapy.
    Pasquier E; Kavallaris M
    IUBMB Life; 2008 Mar; 60(3):165-70. PubMed ID: 18380008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of stathmin in the regulation of the mitotic spindle: potential applications in cancer therapy.
    Mistry SJ; Atweh GF
    Mt Sinai J Med; 2002 Oct; 69(5):299-304. PubMed ID: 12415323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Livin/ML-IAP as a new target for cancer treatment.
    Liu B; Han M; Wen JK; Wang L
    Cancer Lett; 2007 Jun; 250(2):168-76. PubMed ID: 17218055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms for maintaining microtubule bundles.
    Bratman SV; Chang F
    Trends Cell Biol; 2008 Dec; 18(12):580-6. PubMed ID: 18951798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option?
    Fanale D; Bronte G; Passiglia F; Calò V; Castiglia M; Di Piazza F; Barraco N; Cangemi A; Catarella MT; Insalaco L; Listì A; Maragliano R; Massihnia D; Perez A; Toia F; Cicero G; Bazan V
    Anal Cell Pathol (Amst); 2015; 2015():690916. PubMed ID: 26484003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can mutations in gamma-actin modulate the toxicity of microtubule targeting agents?
    Fojo T
    J Natl Cancer Inst; 2006 Oct; 98(19):1345-7. PubMed ID: 17018774
    [No Abstract]   [Full Text] [Related]  

  • 19. Microtubule and MAPs: thermodynamics of complex formation by AUC, ITC, fluorescence, and NMR.
    Devred F; Barbier P; Lafitte D; Landrieu I; Lippens G; Peyrot V
    Methods Cell Biol; 2010; 95():449-80. PubMed ID: 20466148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting loss-of-function mutations in tumor-suppressor genes as a strategy for development of cancer therapeutic agents.
    Wang H; Han H; Mousses S; Von Hoff DD
    Semin Oncol; 2006 Aug; 33(4):513-20. PubMed ID: 16890805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.