These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 17505083)
1. Modelling the effect of laminar axially directed blood flow on the dissolution of non-occlusive blood clots. Sersa I; Vidmar J; Grobelnik B; Mikac U; Tratar G; Blinc A Phys Med Biol; 2007 Jun; 52(11):2969-85. PubMed ID: 17505083 [TBL] [Abstract][Full Text] [Related]
2. A mathematical model for the dissolution of non-occlusive blood clots in fast tangential blood flow. Sersa I; Tratar G; Mikac U; Blinc A Biorheology; 2007; 44(1):1-16. PubMed ID: 17502685 [TBL] [Abstract][Full Text] [Related]
3. Turbulent axially directed flow of plasma containing rt-PA promotes thrombolysis of non-occlusive whole blood clots in vitro. Tratar G; Blinc A; Strukelj M; Mikac U; Sersa I Thromb Haemost; 2004 Mar; 91(3):487-96. PubMed ID: 14983224 [TBL] [Abstract][Full Text] [Related]
5. Flow through clots determines the rate and pattern of fibrinolysis. Blinc A; Kennedy SD; Bryant RG; Marder VJ; Francis CW Thromb Haemost; 1994 Feb; 71(2):230-5. PubMed ID: 8191404 [TBL] [Abstract][Full Text] [Related]
6. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study. Wang SS; Chou NK; Chung TW J Biomed Mater Res A; 2009 Dec; 91(3):753-61. PubMed ID: 19051299 [TBL] [Abstract][Full Text] [Related]
7. Analysis of blood clot degradation fragment sizes in relation to plasma flow velocity. Bajd F; Vidmar J; Blinc A; Serša I Gen Physiol Biophys; 2012 Sep; 31(3):237-45. PubMed ID: 23047936 [TBL] [Abstract][Full Text] [Related]
8. An experimental and theoretical study on the dissolution of mural fibrin clots by tissue-type plasminogen activator. Wootton DM; Popel AS; Alevriadou BR Biotechnol Bioeng; 2002 Feb; 77(4):405-19. PubMed ID: 11787013 [TBL] [Abstract][Full Text] [Related]
9. Microscopic clot fragment evidence of biochemo-mechanical degradation effects in thrombolysis. Bajd F; Vidmar J; Blinc A; Sersa I Thromb Res; 2010 Aug; 126(2):137-43. PubMed ID: 20580981 [TBL] [Abstract][Full Text] [Related]
10. Dependence of blood clot lysis on the mode of transport of urokinase into the clot--a magnetic resonance imaging study in vitro. Blinc A; Planinsic G; Keber D; Jarh O; Lahajnar G; Zidansĕk A; Demsar F Thromb Haemost; 1991 May; 65(5):549-52. PubMed ID: 1871717 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and biophysical conditions for blood clot lysis. Sabovic M; Blinc A Pflugers Arch; 2000; 440(5 Suppl):R134-6. PubMed ID: 11005642 [TBL] [Abstract][Full Text] [Related]
12. The effect of flow on lysis of plasma clots in a plasma environment. Sakharov DV; Rijken DC Thromb Haemost; 2000 Mar; 83(3):469-74. PubMed ID: 10744155 [TBL] [Abstract][Full Text] [Related]
13. Enhanced clot dissolution in vitro by 1.8-MHz pulsed ultrasound. Eggers J; Ossadnik S; Seidel G Ultrasound Med Biol; 2009 Mar; 35(3):523-6. PubMed ID: 19041172 [TBL] [Abstract][Full Text] [Related]
14. Flow-induced permeation of non-occlusive blood clots: an MRI study and modelling. Grobelnik B; Vidmar J; Tratar G; Blinc A; Sersa I Eur Biophys J; 2008 Sep; 37(7):1229-33. PubMed ID: 18478224 [TBL] [Abstract][Full Text] [Related]
15. Numerical simulation of in vitro pulsatile flow and its study using FRISK, a rapid phase contrast technique. Li L; Doyle M; Rayarao G; Kortright E; Ito Y; Anayiotos A J Magn Reson Imaging; 2007 Sep; 26(3):805-15. PubMed ID: 17729352 [TBL] [Abstract][Full Text] [Related]
16. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Chung TW; Wang SS; Tsai WJ Biomaterials; 2008 Jan; 29(2):228-37. PubMed ID: 17953984 [TBL] [Abstract][Full Text] [Related]
17. Lysing patterns of retracted blood clots with diffusion or bulk flow transport of plasma with urokinase into clots--a magnetic resonance imaging study in vitro. Blinc A; Keber D; Lahajnar G; Stegnar M; Zidansek A; Demsar F Thromb Haemost; 1992 Dec; 68(6):667-71. PubMed ID: 1287880 [TBL] [Abstract][Full Text] [Related]
18. Molecular coronary MR imaging of human thrombi using EP-2104R, a fibrin-targeted contrast agent: experimental study in a swine model. Spuentrup E; Katoh M; Wiethoff AJ; Buecker A; Botnar RM; Parsons EC; Guenther RW Rofo; 2007 Nov; 179(11):1166-73. PubMed ID: 17948194 [TBL] [Abstract][Full Text] [Related]
19. Molecular MR imaging of human thrombi in a swine model of pulmonary embolism using a fibrin-specific contrast agent. Spuentrup E; Katoh M; Buecker A; Fausten B; Wiethoff AJ; Wildberger JE; Haage P; Parsons EC; Botnar RM; Graham PB; Vettelschoss M; Günther RW Invest Radiol; 2007 Aug; 42(8):586-95. PubMed ID: 17620942 [TBL] [Abstract][Full Text] [Related]
20. Interactions of fibrinolytic system proteins with lysine-containing surfaces. McClung WG; Clapper DL; Anderson AB; Babcock DE; Brash JL J Biomed Mater Res A; 2003 Sep; 66(4):795-801. PubMed ID: 12926031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]