BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17505109)

  • 1. On the application of molecular-dynamics simulations to validate thermal parameters and to optimize TLS-group selection for macromolecular refinement.
    Glykos NM
    Acta Crystallogr D Biol Crystallogr; 2007 Jun; 63(Pt 6):705-13. PubMed ID: 17505109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, dynamics, and interactions of jacalin. Insights from molecular dynamics simulations examined in conjunction with results of X-ray studies.
    Sharma A; Sekar K; Vijayan M
    Proteins; 2009 Dec; 77(4):760-77. PubMed ID: 19544573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of environment on the structure of Pyrococcus furiosus rubredoxin: a molecular dynamics study.
    Ergenekan CE; Tan ML; Ichiye T
    Proteins; 2005 Dec; 61(4):823-8. PubMed ID: 16245319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 45-ns molecular dynamics simulation of hemoglobin in water by vectorizing and parallelizing COSMOS90 on the earth simulator: dynamics of tertiary and quaternary structures.
    Saito M; Okazaki I
    J Comput Chem; 2007 Apr; 28(6):1129-36. PubMed ID: 17279499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models.
    Yeh IC; Lee MS; Olson MA
    J Phys Chem B; 2008 Nov; 112(47):15064-73. PubMed ID: 18959439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loopless Rop: structure and dynamics of an engineered homotetrameric variant of the repressor of primer protein.
    Glykos NM; Papanikolau Y; Vlassi M; Kotsifaki D; Cesareni G; Kokkinidis M
    Biochemistry; 2006 Sep; 45(36):10905-19. PubMed ID: 16953576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making optimal use of empirical energy functions: force-field parameterization in crystal space.
    Krieger E; Darden T; Nabuurs SB; Finkelstein A; Vriend G
    Proteins; 2004 Dec; 57(4):678-83. PubMed ID: 15390263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of the protein folding process using topology-based models depend on the experimental structure.
    Prieto L; Rey A
    J Chem Phys; 2008 Sep; 129(11):115101. PubMed ID: 19044988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of rotational disorder in a non-standard amino acid from X-ray crystallography and molecular dynamics simulation.
    Dittrich B; Warren JE; Fabbiani FP; Morgenroth W; Corry B
    Phys Chem Chem Phys; 2009 Apr; 11(15):2601-9. PubMed ID: 19421516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into activation and RNA binding of trp RNA-binding attenuation protein (TRAP) through all-atom simulations.
    Murtola T; Vattulainen I; Falck E
    Proteins; 2008 Jun; 71(4):1995-2011. PubMed ID: 18186477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic dissection of the thermal motion of protein-sugar complex.
    Harata K; Kanai R
    Proteins; 2002 Jul; 48(1):53-62. PubMed ID: 12012337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validating a strategy for molecular dynamics simulations of cyclodextrin inclusion complexes through single-crystal X-ray and NMR experimental data: a case study.
    Raffaini G; Ganazzoli F; Malpezzi L; Fuganti C; Fronza G; Panzeri W; Mele A
    J Phys Chem B; 2009 Jul; 113(27):9110-22. PubMed ID: 19526998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can molecular dynamics simulations provide high-resolution refinement of protein structure?
    Chen J; Brooks CL
    Proteins; 2007 Jun; 67(4):922-30. PubMed ID: 17373704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns.
    Meinhold L; Smith JC
    Proteins; 2007 Mar; 66(4):941-53. PubMed ID: 17154425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement.
    Rice LM; BrĂ¼nger AT
    Proteins; 1994 Aug; 19(4):277-90. PubMed ID: 7984624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations for water and ions in protein crystals.
    Hu Z; Jiang J
    Langmuir; 2008 Apr; 24(8):4215-23. PubMed ID: 18318554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear temperature dependence of the crystal structure of lysozyme: correlation between coordinate shifts and thermal factors.
    Joti Y; Nakasako M; Kidera A; Go N
    Acta Crystallogr D Biol Crystallogr; 2002 Sep; 58(Pt 9):1421-32. PubMed ID: 12198298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution.
    Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC
    J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural polymorphism of a marginally stable 4-alpha-helical bundle. Images of a trapped molten globule?
    Glykos NM; Kokkinidis M
    Proteins; 2004 Aug; 56(3):420-5. PubMed ID: 15229876
    [No Abstract]   [Full Text] [Related]  

  • 20. Insight into the early stages of thermal unfolding of peanut agglutinin by molecular dynamics simulations.
    Hansia P; Dev S; Surolia A; Vishveshwara S
    Proteins; 2007 Oct; 69(1):32-42. PubMed ID: 17596827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.