These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 1750528)
1. Glycolysis is predominant source of myocardial ATP production immediately after birth. Lopaschuk GD; Spafford MA; Marsh DR Am J Physiol; 1991 Dec; 261(6 Pt 2):H1698-705. PubMed ID: 1750528 [TBL] [Abstract][Full Text] [Related]
2. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits. Itoi T; Lopaschuk GD Pediatr Res; 1993 Dec; 34(6):735-41. PubMed ID: 8108185 [TBL] [Abstract][Full Text] [Related]
3. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Allard MF; Schönekess BO; Henning SL; English DR; Lopaschuk GD Am J Physiol; 1994 Aug; 267(2 Pt 2):H742-50. PubMed ID: 8067430 [TBL] [Abstract][Full Text] [Related]
4. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. Broderick TL; Quinney HA; Lopaschuk GD J Biol Chem; 1992 Feb; 267(6):3758-63. PubMed ID: 1740427 [TBL] [Abstract][Full Text] [Related]
5. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. Saddik M; Lopaschuk GD J Biol Chem; 1991 May; 266(13):8162-70. PubMed ID: 1902472 [TBL] [Abstract][Full Text] [Related]
6. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart. Schönekess BO; Brindley PG; Lopaschuk GD Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418 [TBL] [Abstract][Full Text] [Related]
7. Energy substrate utilization by isolated working hearts from newborn rabbits. Lopaschuk GD; Spafford MA Am J Physiol; 1990 May; 258(5 Pt 2):H1274-80. PubMed ID: 2337162 [TBL] [Abstract][Full Text] [Related]
8. Glucose use in neonatal rabbit hearts reperfused after global ischemia. Itoi T; Huang L; Lopaschuk GD Am J Physiol; 1993 Aug; 265(2 Pt 2):H427-33. PubMed ID: 8368344 [TBL] [Abstract][Full Text] [Related]
9. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Lopaschuk GD; Spafford MA; Davies NJ; Wall SR Circ Res; 1990 Feb; 66(2):546-53. PubMed ID: 2297817 [TBL] [Abstract][Full Text] [Related]
10. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Broderick TL; Quinney HA; Barker CC; Lopaschuk GD Circulation; 1993 Mar; 87(3):972-81. PubMed ID: 8443916 [TBL] [Abstract][Full Text] [Related]
11. Palmitate oxidation by isolated working fetal and newborn pig hearts. Werner JC; Sicard RE; Schuler HG Am J Physiol; 1989 Feb; 256(2 Pt 1):E315-21. PubMed ID: 2919670 [TBL] [Abstract][Full Text] [Related]
12. Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion. Wambolt RB; Henning SL; English DR; Bondy GP; Allard MF J Mol Cell Cardiol; 1997 Mar; 29(3):939-48. PubMed ID: 9152855 [TBL] [Abstract][Full Text] [Related]
13. Differences in myocardial ischemic tolerance between 1- and 7-day-old rabbits. Lopaschuk GD; Spafford MA Can J Physiol Pharmacol; 1992 Oct; 70(10):1315-23. PubMed ID: 1490250 [TBL] [Abstract][Full Text] [Related]
14. Competition between lactate and fatty acids as sources of ATP in the isolated working rat heart. Schönekess BO J Mol Cell Cardiol; 1997 Oct; 29(10):2725-33. PubMed ID: 9344767 [TBL] [Abstract][Full Text] [Related]
15. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Collins-Nakai RL; Noseworthy D; Lopaschuk GD Am J Physiol; 1994 Nov; 267(5 Pt 2):H1862-71. PubMed ID: 7977816 [TBL] [Abstract][Full Text] [Related]
16. Adenosine modification of energy substrate use in isolated hearts perfused with fatty acids. Finegan BA; Clanachan AS; Coulson CS; Lopaschuk GD Am J Physiol; 1992 May; 262(5 Pt 2):H1501-7. PubMed ID: 1590454 [TBL] [Abstract][Full Text] [Related]
17. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. Lopaschuk GD; Wambolt RB; Barr RL J Pharmacol Exp Ther; 1993 Jan; 264(1):135-44. PubMed ID: 8380856 [TBL] [Abstract][Full Text] [Related]
18. High levels of fatty acids increase contractile function of neonatal rabbit hearts during reperfusion following ischemia. Ito M; Jaswal JS; Lam VH; Oka T; Zhang L; Beker DL; Lopaschuk GD; Rebeyka IM Am J Physiol Heart Circ Physiol; 2010 May; 298(5):H1426-37. PubMed ID: 20154256 [TBL] [Abstract][Full Text] [Related]
19. Effects of diltiazem on glycolysis and oxidative metabolism in the ischemic and ischemic/reperfused heart. Lopaschuk GD; Barr R; Wambolt R J Pharmacol Exp Ther; 1992 Mar; 260(3):1220-8. PubMed ID: 1545389 [TBL] [Abstract][Full Text] [Related]
20. Triacylglycerol turnover in isolated working hearts of acutely diabetic rats. Saddik M; Lopaschuk GD Can J Physiol Pharmacol; 1994 Oct; 72(10):1110-9. PubMed ID: 7882174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]