These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 17505968)

  • 1. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae.
    Costa V; Quintanilha A; Moradas-Ferreira P
    IUBMB Life; 2007; 59(4-5):293-8. PubMed ID: 17505968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of proteasome-mediated protein degradation during oxidative stress and aging.
    Breusing N; Grune T
    Biol Chem; 2008 Mar; 389(3):203-9. PubMed ID: 18208355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of altered proteins and ageing: causes and effects.
    Hipkiss AR
    Exp Gerontol; 2006 May; 41(5):464-73. PubMed ID: 16621390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidized proteins: mechanisms of removal and consequences of accumulation.
    Dunlop RA; Brunk UT; Rodgers KJ
    IUBMB Life; 2009 May; 61(5):522-7. PubMed ID: 19391165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    J Biochem; 2005 Oct; 138(4):391-7. PubMed ID: 16272133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipofuscin: formation, distribution, and metabolic consequences.
    Jung T; Bader N; Grune T
    Ann N Y Acad Sci; 2007 Nov; 1119():97-111. PubMed ID: 18056959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Interaction of reactive oxygen and nitrogen species with proteins].
    Ponczek MB; Wachowicz B
    Postepy Biochem; 2005; 51(2):140-5. PubMed ID: 16209351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of oxidative damage during replicative aging of the yeast Saccharomyces cerevisiae.
    Grzelak A; Macierzyńska E; Bartosz G
    Exp Gerontol; 2006 Sep; 41(9):813-8. PubMed ID: 16891074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes.
    Lushchak VI
    Acta Biochim Pol; 2006; 53(4):679-84. PubMed ID: 17063208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26 S proteasome.
    Ishii T; Sakurai T; Usami H; Uchida K
    Biochemistry; 2005 Oct; 44(42):13893-901. PubMed ID: 16229478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration.
    Chen Q; Ding Q; Keller JN
    Biogerontology; 2005; 6(1):1-13. PubMed ID: 15834659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidized proteins: intracellular distribution and recognition by the proteasome.
    Jung T; Bader N; Grune T
    Arch Biochem Biophys; 2007 Jun; 462(2):231-7. PubMed ID: 17362872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein oxidation and proteolysis.
    Bader N; Grune T
    Biol Chem; 2006; 387(10-11):1351-5. PubMed ID: 17081106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and quantification of protein carbonylation using light and heavy isotope labeled Girard's P reagent.
    Mirzaei H; Regnier F
    J Chromatogr A; 2006 Nov; 1134(1-2):122-33. PubMed ID: 16996067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA interference toward UMP1 induces proteasome inhibition in Saccharomyces cerevisiae: evidence for protein oxidation and autophagic cell death.
    Chen Q; Ding Q; Thorpe J; Dohmen RJ; Keller JN
    Free Radic Biol Med; 2005 Jan; 38(2):226-34. PubMed ID: 15607905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation.
    Dal Vechio FH; Cerqueira F; Augusto O; Lopes R; Demasi M
    Free Radic Biol Med; 2014 Feb; 67():304-13. PubMed ID: 24291399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation and ubiquitination in neurodegeneration.
    Riederer BM; Leuba G; Elhajj Z
    Exp Biol Med (Maywood); 2013 May; 238(5):519-24. PubMed ID: 23856903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein oxidation in aging and the removal of oxidized proteins.
    Höhn A; König J; Grune T
    J Proteomics; 2013 Oct; 92():132-59. PubMed ID: 23333925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.