These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 17506038)
21. Rapid, solution-based characterization of optimized SERS nanoparticle substrates. Laurence TA; Braun G; Talley C; Schwartzberg A; Moskovits M; Reich N; Huser T J Am Chem Soc; 2009 Jan; 131(1):162-9. PubMed ID: 19063599 [TBL] [Abstract][Full Text] [Related]
22. Adenosine detection by using gold nanoparticles and designed aptamer sequences. Li F; Zhang J; Cao X; Wang L; Li D; Song S; Ye B; Fan C Analyst; 2009 Jul; 134(7):1355-60. PubMed ID: 19562201 [TBL] [Abstract][Full Text] [Related]
23. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique. Huang CZ; Liao QG; Gan LH; Guo FL; Li YF Anal Chim Acta; 2007 Dec; 604(2):165-9. PubMed ID: 17996538 [TBL] [Abstract][Full Text] [Related]
24. Electrical detection of oligonucleotide using an aggregate of gold nanoparticles as a conductive tag. Fang C; Fan Y; Kong J; Gao Z; Balasubramanian N Anal Chem; 2008 Dec; 80(24):9387-94. PubMed ID: 19072259 [TBL] [Abstract][Full Text] [Related]
25. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA). Xu W; Xie X; Li D; Yang Z; Li T; Liu X Small; 2012 Jun; 8(12):1846-50. PubMed ID: 22461378 [TBL] [Abstract][Full Text] [Related]
26. Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides. Steinbrück A; Csaki A; Ritter K; Leich M; Köhler JM; Fritzsche W J Biophotonics; 2008 May; 1(2):104-13. PubMed ID: 19343642 [TBL] [Abstract][Full Text] [Related]
27. pH-induced reversible expansion/contraction of gold nanoparticle aggregates. Chen Y; Mao C Small; 2008 Dec; 4(12):2191-4. PubMed ID: 19016526 [No Abstract] [Full Text] [Related]
28. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles. Zhang H; Harpster MH; Park HJ; Johnson PA; Wilson WC Anal Chem; 2011 Jan; 83(1):254-60. PubMed ID: 21121693 [TBL] [Abstract][Full Text] [Related]
29. Diagnostics of single base-mismatch DNA hybridization on gold nanoparticles by using the hyper-Rayleigh scattering technique. Ray PC Angew Chem Int Ed Engl; 2006 Feb; 45(7):1151-4. PubMed ID: 16404762 [No Abstract] [Full Text] [Related]
30. Homocysteine-mediated reactivity and assembly of gold nanoparticles. Lim II; Ip W; Crew E; Njoki PN; Mott D; Zhong CJ; Pan Y; Zhou S Langmuir; 2007 Jan; 23(2):826-33. PubMed ID: 17209640 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and characterization of deoxyribonucleic acid-conjugated gold nanoparticles. Hazarika P; Giorgi T; Reibner M; Ceyhan B; Niemeyer CM Methods Mol Biol; 2004; 283():295-304. PubMed ID: 15197320 [TBL] [Abstract][Full Text] [Related]
32. Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. Suzuki K; Hosokawa K; Maeda M J Am Chem Soc; 2009 Jun; 131(22):7518-9. PubMed ID: 19445511 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and spectroscopic characterization of gold nanoparticles. Philip D Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956 [TBL] [Abstract][Full Text] [Related]
34. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. Eck W; Craig G; Sigdel A; Ritter G; Old LJ; Tang L; Brennan MF; Allen PJ; Mason MD ACS Nano; 2008 Nov; 2(11):2263-72. PubMed ID: 19206392 [TBL] [Abstract][Full Text] [Related]
35. An ultrasensitive method for the detection of gene fragment from transgenics using label-free gold nanoparticle probe and dynamic light scattering. Gao D; Sheng Z; Han H Anal Chim Acta; 2011 Jun; 696(1-2):1-5. PubMed ID: 21621028 [TBL] [Abstract][Full Text] [Related]
36. A highly selective and sensitive on-off sensor for silver ions and cysteine by light scattering technique of DNA-functionalized gold nanoparticles. Feng DQ; Liu G; Zheng W; Liu J; Chen T; Li D Chem Commun (Camb); 2011 Aug; 47(30):8557-9. PubMed ID: 21706106 [TBL] [Abstract][Full Text] [Related]
37. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles. Wu C; Xiong C; Wang L; Lan C; Ling L Analyst; 2010 Oct; 135(10):2682-7. PubMed ID: 20820488 [TBL] [Abstract][Full Text] [Related]
38. Well-defined nanoassemblies using gold nanoparticles bearing specific number of DNA strands. Qin WJ; Yung LY Bioconjug Chem; 2008 Jan; 19(1):385-90. PubMed ID: 18062658 [TBL] [Abstract][Full Text] [Related]
39. A selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Goettmann F; Moores A; Boissière C; Le Floch P; Sanchez C Small; 2005 Jun; 1(6):636-9. PubMed ID: 17193499 [No Abstract] [Full Text] [Related]
40. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]