These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 17506352)
1. The effect of the structure of the nitrogen-containing heterocycle on reversible anticholinesterase effect of heterocyclic thionephosphonates of different hydrophobicity. Rozengart EV; Basova NE Dokl Biochem Biophys; 2007; 412():40-2. PubMed ID: 17506352 [No Abstract] [Full Text] [Related]
2. Alkynyl and β-ketophosphonates: Selective and potent butyrylcholinesterase inhibitors. Cavallaro V; Moglie YF; Murray AP; Radivoy GE Bioorg Chem; 2018 Apr; 77():420-428. PubMed ID: 29427857 [TBL] [Abstract][Full Text] [Related]
3. The effect of ionic strength on the reversible inhibition of acetylcholinesterase under the influence of thionephosphonates of different hydrophobicity. Rozengart EV; Basova NE Dokl Biochem Biophys; 2006; 410():280-2. PubMed ID: 17286103 [No Abstract] [Full Text] [Related]
4. [The use of the multidimensional statistic analysis for investigation of anticholinesterase activity of organophosphorus inhibitors depending on their structure]. Moralev SN; Baziukin AB Zh Evol Biokhim Fiziol; 1997; 33(3):302-7. PubMed ID: 9479389 [No Abstract] [Full Text] [Related]
5. Preparation, anticholinesterase activity and molecular docking of new lupane derivatives. Castro MJ; Richmond V; Romero C; Maier MS; Estévez-Braun A; Ravelo AG; Faraoni MB; Murray AP Bioorg Med Chem; 2014 Jul; 22(13):3341-50. PubMed ID: 24835788 [TBL] [Abstract][Full Text] [Related]
6. [Features of inhibiting butyrylcholinesterase and carboxylesterase hydrolysis with fluoranhydride esters of beta,beta-diphenylethylphosphonic acid]. Brestkin AP; Efimtseva EA; Kuznetsova LP; Nikol'skaia EB; Fridland SV Biokhimiia; 1996 Mar; 61(3):472-9. PubMed ID: 8724606 [TBL] [Abstract][Full Text] [Related]
7. Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: a further study based on Flavokawain B Mannich base derivatives. Liu H; Fan H; Gao X; Huang X; Liu X; Liu L; Zhou C; Tang J; Wang Q; Liu W J Enzyme Inhib Med Chem; 2016 Aug; 31(4):580-9. PubMed ID: 26186269 [TBL] [Abstract][Full Text] [Related]
8. [Correlation of anticholinesterase activity of reversible peralkylated onium inhibitors of various acetylcholinesterases and geometric parameters of their molecules]. Rozengart EB; Shestakova NN; Prokator SO; Basova NE Zh Evol Biokhim Fiziol; 1998; 34(6):648-53. PubMed ID: 10188231 [No Abstract] [Full Text] [Related]
9. Cage amines as the stopper inhibitors of cholinesterases. Lin G; Tsai HJ; Tsai YH Bioorg Med Chem Lett; 2003 Sep; 13(17):2887-90. PubMed ID: 14611850 [TBL] [Abstract][Full Text] [Related]
10. Design, synthesis and evaluation of difunctionalized 4-hydroxybenzaldehyde derivatives as novel cholinesterase inhibitors. Yu L; Cao R; Yi W; Yan Q; Chen Z; Ma L; Song H Chem Pharm Bull (Tokyo); 2010 Sep; 58(9):1216-20. PubMed ID: 20823602 [TBL] [Abstract][Full Text] [Related]
12. Design and synthesis of N-benzylpiperidine-purine derivatives as new dual inhibitors of acetyl- and butyrylcholinesterase. Rodríguez-Franco MI; Fernández-Bachiller MI; Pérez C; Castro A; Martínez A Bioorg Med Chem; 2005 Dec; 13(24):6795-802. PubMed ID: 16183292 [TBL] [Abstract][Full Text] [Related]
13. Ionic liquid-enabled synthesis, cholinesterase inhibitory activity, and molecular docking study of highly functionalized tetrasubstituted pyrrolidines. Kumar RS; Almansour AI; Arumugam N; Althomili DMQ; Altaf M; Basiri A; D K; Sai Manohar T; S V Bioorg Chem; 2018 Apr; 77():263-268. PubMed ID: 29421701 [TBL] [Abstract][Full Text] [Related]
14. [Benzimidazolium derivatives with delocalized charge in the cation group as reversible inhibitors of cholinesterases of different origin]. Rozengart EV; Girshovich MZ; Basova NE Dokl Akad Nauk; 1997 Jul; 355(1):123-5. PubMed ID: 9333408 [No Abstract] [Full Text] [Related]
15. Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Wiemann J; Karasch J; Loesche A; Heller L; Brandt W; Csuk R Eur J Med Chem; 2017 Oct; 139():222-231. PubMed ID: 28802122 [TBL] [Abstract][Full Text] [Related]
16. The relationship between the anticholinesterase effect of organophosphorous inhibitors and the extent of shielding (accessibility) of the phosphorus atom. Rozengart EV Dokl Biochem Biophys; 2003; 389():130-3. PubMed ID: 12856422 [No Abstract] [Full Text] [Related]
17. Donepezil-melatonin hybrids as butyrylcholinesterase inhibitors: Improving binding affinity through varying mode of linking fragments. Łozińska I; Świerczyńska A; Molęda Z; Hartman AM; Hirsch AKH; Czarnocki Z Arch Pharm (Weinheim); 2018 Nov; 351(11):e1800194. PubMed ID: 30290008 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of novel 5-(aroylhydrazinocarbonyl)escitalopram as cholinesterase inhibitors. Nisa MU; Munawar MA; Iqbal A; Ahmed A; Ashraf M; Gardener QA; Khan MA Eur J Med Chem; 2017 Sep; 138():396-406. PubMed ID: 28688279 [TBL] [Abstract][Full Text] [Related]
19. Acetylcholinesterase inhibition by pitofenone: a spasmolytic compound. Punekar NS; Kulkarni AV Biotechnol Appl Biochem; 1991 Dec; 14(3):378-82. PubMed ID: 1777122 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Razavi SF; Khoobi M; Nadri H; Sakhteman A; Moradi A; Emami S; Foroumadi A; Shafiee A Eur J Med Chem; 2013 Jun; 64():252-9. PubMed ID: 23644208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]