These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 17506518)
1. Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns. Zapata P; Su J; García AJ; Meredith JC Biomacromolecules; 2007 Jun; 8(6):1907-17. PubMed ID: 17506518 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial characterization of cell interactions with polymer surfaces. Meredith JC; Sormana JL; Keselowsky BG; García AJ; Tona A; Karim A; Amis EJ J Biomed Mater Res A; 2003 Sep; 66(3):483-90. PubMed ID: 12918030 [TBL] [Abstract][Full Text] [Related]
3. Block copolymer of polyphosphoester and poly(L-lactic acid) modified surface for enhancing osteoblast adhesion, proliferation, and function. Yang XZ; Sun TM; Dou S; Wu J; Wang YC; Wang J Biomacromolecules; 2009 Aug; 10(8):2213-20. PubMed ID: 19586040 [TBL] [Abstract][Full Text] [Related]
4. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186 [TBL] [Abstract][Full Text] [Related]
5. Wettability influences cell behavior on superhydrophobic surfaces with different topographies. Lourenço BN; Marchioli G; Song W; Reis RL; van Blitterswijk CA; Karperien M; van Apeldoorn A; Mano JF Biointerphases; 2012 Dec; 7(1-4):46. PubMed ID: 22833364 [TBL] [Abstract][Full Text] [Related]
6. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Koegler WS; Griffith LG Biomaterials; 2004 Jun; 25(14):2819-30. PubMed ID: 14962560 [TBL] [Abstract][Full Text] [Related]
7. 3D polymer scaffold arrays. Simon CG; Yang Y; Dorsey SM; Ramalingam M; Chatterjee K Methods Mol Biol; 2011; 671():161-74. PubMed ID: 20967629 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
9. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links. Wang K; Cai L; Hao F; Xu X; Cui M; Wang S Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174 [TBL] [Abstract][Full Text] [Related]
10. Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro-/nanopatterned substrates: a study of cell-substrate interactions. Martínez E; Engel E; López-Iglesias C; Mills CA; Planell JA; Samitier J Micron; 2008; 39(2):111-6. PubMed ID: 17291772 [TBL] [Abstract][Full Text] [Related]
11. The use of temperature-composition combinatorial libraries to study the effects of biodegradable polymer blend surfaces on vascular cells. Sung HJ; Su J; Berglund JD; Russ BV; Meredith JC; Galis ZS Biomaterials; 2005 Aug; 26(22):4557-67. PubMed ID: 15722125 [TBL] [Abstract][Full Text] [Related]
12. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Akay G; Birch MA; Bokhari MA Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889 [TBL] [Abstract][Full Text] [Related]
13. Osteoblast function on synthetic biodegradable polymers. Ishaug SL; Yaszemski MJ; Bizios R; Mikos AG J Biomed Mater Res; 1994 Dec; 28(12):1445-53. PubMed ID: 7876284 [TBL] [Abstract][Full Text] [Related]
15. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces. Park JW; Kim YJ; Jang JH Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830 [TBL] [Abstract][Full Text] [Related]
16. Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation. Kennedy SB; Washburn NR; Simon CG; Amis EJ Biomaterials; 2006 Jul; 27(20):3817-24. PubMed ID: 16563495 [TBL] [Abstract][Full Text] [Related]
17. Porcine-derived xenogeneic bone/poly(glycolide-co-lactide-co-caprolactone) composite and its affinity with rat OCT-1 osteoblast-like cells. Qu X; Wan Y; Zhang H; Cui W; Bei J; Wang S Biomaterials; 2006 Jan; 27(2):216-25. PubMed ID: 16054684 [TBL] [Abstract][Full Text] [Related]
18. The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone. Tang ZG; Callaghan JT; Hunt JA Biomaterials; 2005 Nov; 26(33):6618-24. PubMed ID: 15935466 [TBL] [Abstract][Full Text] [Related]
19. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Cai L; Guinn AS; Wang S Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Subramani K; Birch MA Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]