These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 17506521)
1. Method for quantifying the PEGylation of gelatin nanoparticle drug carrier systems using asymmetrical flow field-flow fractionation and refractive index detection. Zillies JC; Zwiorek K; Winter G; Coester C Anal Chem; 2007 Jun; 79(12):4574-80. PubMed ID: 17506521 [TBL] [Abstract][Full Text] [Related]
2. Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Fraunhofer W; Winter G; Coester C Anal Chem; 2004 Apr; 76(7):1909-20. PubMed ID: 15053651 [TBL] [Abstract][Full Text] [Related]
3. PEGylated nanocarriers for systemic delivery. Jain NK; Nahar M Methods Mol Biol; 2010; 624():221-34. PubMed ID: 20217599 [TBL] [Abstract][Full Text] [Related]
4. Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing. Engel A; Plöger M; Mulac D; Langer K Int J Pharm; 2014 Jan; 461(1-2):137-44. PubMed ID: 24296046 [TBL] [Abstract][Full Text] [Related]
5. Asymmetrical flow field-flow fractionation with multi-angle light scattering detection for the analysis of structured nanoparticles. Zattoni A; Rambaldi DC; Reschiglian P; Melucci M; Krol S; Garcia AM; Sanz-Medel A; Roessner D; Johann C J Chromatogr A; 2009 Dec; 1216(52):9106-12. PubMed ID: 19576590 [TBL] [Abstract][Full Text] [Related]
6. Asymmetrical flow field-flow fractionation for human serum albumin based nanoparticle characterisation and a deeper insight into particle formation processes. John C; Langer K J Chromatogr A; 2014 Jun; 1346():97-106. PubMed ID: 24800970 [TBL] [Abstract][Full Text] [Related]
7. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. Ehrhart J; Mingotaud AF; Violleau F J Chromatogr A; 2011 Jul; 1218(27):4249-56. PubMed ID: 21300359 [TBL] [Abstract][Full Text] [Related]
8. In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. Kanzer J; Hupfeld S; Vasskog T; Tho I; Hölig P; Mägerlein M; Fricker G; Brandl M J Pharm Biomed Anal; 2010 Nov; 53(3):359-65. PubMed ID: 20447794 [TBL] [Abstract][Full Text] [Related]
9. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent. Fahrländer E; Schelhaas S; Jacobs AH; Langer K Nanotechnology; 2015 Apr; 26(14):145103. PubMed ID: 25789544 [TBL] [Abstract][Full Text] [Related]
10. Size fractionation and characterization of natural aquatic colloids and nanoparticles. Baalousha M; Lead JR Sci Total Environ; 2007 Nov; 386(1-3):93-102. PubMed ID: 17644161 [TBL] [Abstract][Full Text] [Related]
11. Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. Isaacson CW; Bouchard D J Chromatogr A; 2010 Feb; 1217(9):1506-12. PubMed ID: 20070969 [TBL] [Abstract][Full Text] [Related]
12. High speed two-dimensional protein separation without gel by isoelectric focusing-asymmetrical flow field flow fractionation: application to urinary proteome. Kim KH; Moon MH J Proteome Res; 2009 Sep; 8(9):4272-8. PubMed ID: 19653698 [TBL] [Abstract][Full Text] [Related]
13. Revealing the size, conformation, and shape of casein micelles and aggregates with asymmetrical flow field-flow fractionation and multiangle light scattering. Glantz M; Håkansson A; Lindmark Månsson H; Paulsson M; Nilsson L Langmuir; 2010 Aug; 26(15):12585-91. PubMed ID: 20666417 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Balthasar S; Michaelis K; Dinauer N; von Briesen H; Kreuter J; Langer K Biomaterials; 2005 May; 26(15):2723-32. PubMed ID: 15585276 [TBL] [Abstract][Full Text] [Related]
15. Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization. Chen YC; Yu SH; Tsai GJ; Tang DW; Mi FL; Peng YP J Agric Food Chem; 2010 Jun; 58(11):6728-34. PubMed ID: 20476739 [TBL] [Abstract][Full Text] [Related]
16. Separation science: Principles and applications for the analysis of bionanoparticles by asymmetrical flow field-flow fractionation (AF4). Moquin A; Winnik FM; Maysinger D Methods Mol Biol; 2013; 991():325-41. PubMed ID: 23546682 [TBL] [Abstract][Full Text] [Related]
17. Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model. Beck-Broichsitter M; Gauss J; Packhaeuser CB; Lahnstein K; Schmehl T; Seeger W; Kissel T; Gessler T Int J Pharm; 2009 Feb; 367(1-2):169-78. PubMed ID: 18848609 [TBL] [Abstract][Full Text] [Related]
18. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
19. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure. Baalousha M; Lead JR Environ Sci Technol; 2012 Jun; 46(11):6134-42. PubMed ID: 22594655 [TBL] [Abstract][Full Text] [Related]
20. Recombinant human gelatin nanoparticles as a protein drug carrier. Won YW; Kim YH J Control Release; 2008 Apr; 127(2):154-61. PubMed ID: 18329122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]