These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1055 related articles for article (PubMed ID: 17506527)
1. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis. Lassila JK; Keeffe JR; Kast P; Mayo SL Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527 [TBL] [Abstract][Full Text] [Related]
2. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli. Christendat D; Saridakis VC; Turnbull JL Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamics of a transition state analogue inhibitor binding to Escherichia coli chorismate mutase: probing the charge state of an active site residue and its role in inhibitor binding and catalysis. Lee AY; Zhang S; Kongsaeree P; Clardy J; Ganem B; Erickson JW; Xie D Biochemistry; 1998 Jun; 37(25):9052-7. PubMed ID: 9636050 [TBL] [Abstract][Full Text] [Related]
4. Selective stabilization of the chorismate mutase transition state by a positively charged hydrogen bond donor. Kienhöfer A; Kast P; Hilvert D J Am Chem Soc; 2003 Mar; 125(11):3206-7. PubMed ID: 12630863 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme. Hur S; Bruice TC Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1176-81. PubMed ID: 11818529 [TBL] [Abstract][Full Text] [Related]
6. Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity. Lassila JK; Keeffe JR; Oelschlaeger P; Mayo SL Protein Eng Des Sel; 2005 Apr; 18(4):161-3. PubMed ID: 15820980 [TBL] [Abstract][Full Text] [Related]
7. Relative tolerance of mesostable and thermostable protein homologs to extensive mutation. Besenmatter W; Kast P; Hilvert D Proteins; 2007 Feb; 66(2):500-6. PubMed ID: 17096428 [TBL] [Abstract][Full Text] [Related]
8. Stability for function trade-offs in the enolase superfamily "catalytic module". Nagatani RA; Gonzalez A; Shoichet BK; Brinen LS; Babbitt PC Biochemistry; 2007 Jun; 46(23):6688-95. PubMed ID: 17503785 [TBL] [Abstract][Full Text] [Related]
9. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction. Ishida T J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479 [TBL] [Abstract][Full Text] [Related]
10. Exploring sequence constraints on an interhelical turn using in vivo selection for catalytic activity. MacBeath G; Kast P; Hilvert D Protein Sci; 1998 Feb; 7(2):325-35. PubMed ID: 9521108 [TBL] [Abstract][Full Text] [Related]
11. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain. Zhang S; Wilson DB; Ganem B Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128 [TBL] [Abstract][Full Text] [Related]
12. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction. Chook YM; Gray JV; Ke H; Lipscomb WN J Mol Biol; 1994 Jul; 240(5):476-500. PubMed ID: 8046752 [TBL] [Abstract][Full Text] [Related]
13. Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli. Christendat D; Turnbull J Biochemistry; 1996 Apr; 35(14):4468-79. PubMed ID: 8605196 [TBL] [Abstract][Full Text] [Related]
14. Kinetic characterization of the Escherichia coli oligopeptidase A (OpdA) and the role of the Tyr(607) residue. Lorenzon RZ; Cunha CE; Marcondes MF; Machado MF; Juliano MA; Oliveira V; Travassos LR; Paschoalin T; Carmona AK Arch Biochem Biophys; 2010 Aug; 500(2):131-6. PubMed ID: 20513640 [TBL] [Abstract][Full Text] [Related]
15. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis. Hur S; Bruice TC J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937 [TBL] [Abstract][Full Text] [Related]
16. 1.6 A crystal structure of the secreted chorismate mutase from Mycobacterium tuberculosis: novel fold topology revealed. Okvist M; Dey R; Sasso S; Grahn E; Kast P; Krengel U J Mol Biol; 2006 Apr; 357(5):1483-99. PubMed ID: 16499927 [TBL] [Abstract][Full Text] [Related]
17. Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. Lütke-Eversloh T; Stephanopoulos G Appl Environ Microbiol; 2005 Nov; 71(11):7224-8. PubMed ID: 16269762 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues. Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471 [TBL] [Abstract][Full Text] [Related]
20. The β1 domain of protein G can replace the chorismate mutase domain of the T-protein. Osuna J; Flores H; Saab-Rincón G FEBS Lett; 2012 Feb; 586(4):466-71. PubMed ID: 22285487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]