BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17506543)

  • 1. Stabilization of a transition-state analogue at the active site of yeast cytosine deaminase: importance of proton transfers.
    Xu Q; Guo H; Gorin A; Guo H
    J Phys Chem B; 2007 Jun; 111(23):6501-6. PubMed ID: 17506543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular dynamics exploration of the catalytic mechanism of yeast cytosine deaminase.
    Yao L; Sklenak S; Yan H; Cukier RI
    J Phys Chem B; 2005 Apr; 109(15):7500-10. PubMed ID: 16851861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of tight binding of a near-perfect transition-state analogue by cytidine deaminase: implications for enzyme catalysis.
    Guo H; Rao N; Xu Q; Guo H
    J Am Chem Soc; 2005 Mar; 127(9):3191-7. PubMed ID: 15740159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic mechanism of yeast cytosine deaminase: an ONIOM computational study.
    Sklenak S; Yao L; Cukier RI; Yan H
    J Am Chem Soc; 2004 Nov; 126(45):14879-89. PubMed ID: 15535715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism of guanine deaminase: an ONIOM and molecular dynamics study.
    Yao L; Cukier RI; Yan H
    J Phys Chem B; 2007 Apr; 111(16):4200-10. PubMed ID: 17394305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II.
    Xue Y; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Sep; 17(1):93-106. PubMed ID: 7901850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined ONIOM quantum chemical-molecular dynamics study of zinc-uracil bond breaking in yeast cytosine deaminase.
    Yao L; Yan H; Cukier RI
    J Phys Chem B; 2006 Dec; 110(51):26320-6. PubMed ID: 17181291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An insight into the environmental effects of the pocket of the active site of the enzyme. Ab initio ONIOM-molecular dynamics (MD) study on cytosine deaminase.
    Matsubara T; Dupuis M; Aida M
    J Comput Chem; 2008 Feb; 29(3):458-65. PubMed ID: 17663441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of glutamate 64 in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase.
    Wang J; Sklenak S; Liu A; Felczak K; Wu Y; Li Y; Yan H
    Biochemistry; 2012 Jan; 51(1):475-86. PubMed ID: 22208667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined QM(DFT)/MM molecular dynamics simulations of the deamination of cytosine by yeast cytosine deaminase (yCD).
    Zhang X; Zhao Y; Yan H; Cao Z; Mo Y
    J Comput Chem; 2016 May; 37(13):1163-74. PubMed ID: 26813441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1997 Apr; 36(16):4768-74. PubMed ID: 9125497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-transfer reactions in reaction center of photosynthetic bacteria Rhodobacter sphaeroides.
    Kaneko Y; Hayashi S; Ohmine I
    J Phys Chem B; 2009 Jul; 113(26):8993-9003. PubMed ID: 19496556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic role of proton transfers in the formation of a tetrahedral adduct in a serine carboxyl peptidase.
    Guo H; Wlodawer A; Nakayama T; Xu Q; Guo H
    Biochemistry; 2006 Aug; 45(30):9129-37. PubMed ID: 16866358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational study towards understanding the mechanism of phosphodiester cleavage by two mononuclear Zn(II) complexes.
    Dong H
    Phys Chem Chem Phys; 2010 Sep; 12(35):10434-43. PubMed ID: 20603674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations.
    Wong KY; Gao J
    Biochemistry; 2007 Nov; 46(46):13352-69. PubMed ID: 17966992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase.
    van der Kamp MW; Perruccio F; Mulholland AJ
    Proteins; 2007 Nov; 69(3):521-35. PubMed ID: 17623847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmission coefficient calculation for proton transfer in triosephosphate isomerase based on the reaction path potential method.
    Wang M; Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):101-7. PubMed ID: 15260526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta.
    Bojin MD; Schlick T
    J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical nature of interactions within the active site of cytosine-5-methyltransferase.
    Forde GK; Kedzierski P; Sokalski WA; Forde AE; Hill GA; Leszczynski J
    J Phys Chem A; 2006 Feb; 110(6):2308-13. PubMed ID: 16466269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.