These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17506557)

  • 1. Two-photon absorbing block copolymer as a nanocarrier for porphyrin: energy transfer and singlet oxygen generation in micellar aqueous solution.
    Chen CY; Tian Y; Cheng YJ; Young AC; Ka JW; Jen AK
    J Am Chem Soc; 2007 Jun; 129(23):7220-1. PubMed ID: 17506557
    [No Abstract]   [Full Text] [Related]  

  • 2. Self-assembled star-shaped chlorin-core poly(epsilon-caprolactone)-poly(ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies.
    Peng CL; Shieh MJ; Tsai MH; Chang CC; Lai PS
    Biomaterials; 2008 Sep; 29(26):3599-608. PubMed ID: 18572240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multifunctional nanoassembly of mesogen-bearing amphiphiles and porphyrins for the simultaneous photodelivery of nitric oxide and singlet oxygen.
    Caruso EB; Cicciarella E; Sortino S
    Chem Commun (Camb); 2007 Dec; (47):5028-30. PubMed ID: 18049742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced two-photon singlet oxygen generation by photosensitizer-doped conjugated polymer nanoparticles.
    Shen X; He F; Wu J; Xu GQ; Yao SQ; Xu QH
    Langmuir; 2011 Mar; 27(5):1739-44. PubMed ID: 21247190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of kinetic parameters of singlet molecular oxygen in aqueous porphyrin solutions. Effect of detergents and the quencher sodium azide].
    Butorina DN; Krasnovskiĭ AA; Priezzhev AV
    Biofizika; 2003; 48(2):201-9. PubMed ID: 12723342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic control of interchromophoric interaction in cationic bis-porphyrins toward efficient DNA photocleavage and singlet oxygen production in aqueous solution.
    Ishikawa Y; Yamakawa N; Uno T
    Bioorg Med Chem; 2007 Aug; 15(15):5230-8. PubMed ID: 17513112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel water-soluble photosensitizer based on starch and containing porphyrin.
    Nowakowska M; Sterzel M; Zapotoczny S
    Photochem Photobiol; 2005; 81(5):1227-33. PubMed ID: 15876130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced singlet oxygen generation from a porphyrin-rhodamine B dyad by two-photon excitation through resonance energy transfer.
    Ngen EJ; Xiao L; Rajaputra P; Yan X; You Y
    Photochem Photobiol; 2013; 89(4):841-8. PubMed ID: 23489066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-transfer of porphyrins by polypeptide-containing hyperbranched polymers and a novel iron(iii) porphyrin biomimetic catalyst.
    Ren QZ; Yao Y; Ding XJ; Hou ZS; Yan DY
    Chem Commun (Camb); 2009 Aug; (31):4732-4. PubMed ID: 19641825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery.
    Sun TM; Du JZ; Yan LF; Mao HQ; Wang J
    Biomaterials; 2008 Nov; 29(32):4348-55. PubMed ID: 18715636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porphyrin-polymer nanocompartments: singlet oxygen generation and antimicrobial activity.
    Lanzilotto A; Kyropoulou M; Constable EC; Housecroft CE; Meier WP; Palivan CG
    J Biol Inorg Chem; 2018 Jan; 23(1):109-122. PubMed ID: 29218642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and investigation of singlet oxygen production efficiency of photosensitizers based on meso-phenyl-2,5-thienylene linked porphyrin oligomers and polymers.
    Khan R; Idris M; Tuncel D
    Org Biomol Chem; 2015 Nov; 13(42):10496-504. PubMed ID: 26332671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of porphyrin supramolecular structure on singlet oxygen photogeneration.
    Solovieva A; Vstovsky G; Kotova S; Glagolev N; Zav'yalov BS; Belyaev V; Erina N; Timashev P
    Micron; 2005; 36(6):508-18. PubMed ID: 16011899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoswitchable Micelles for the Control of Singlet-Oxygen Generation in Photodynamic Therapies.
    Zhai Y; Busscher HJ; Liu Y; Zhang Z; van Kooten TG; Su L; Zhang Y; Liu J; Liu J; An Y; Shi L
    Biomacromolecules; 2018 Jun; 19(6):2023-2033. PubMed ID: 29584416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual location stimuli-responsive degradation strategy of block copolymer nanocarriers for accelerated release.
    Chan N; Khorsand B; Aleksanian S; Oh JK
    Chem Commun (Camb); 2013 Sep; 49(68):7534-6. PubMed ID: 23863915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A valid way of quasi-quantificationally controlling the self-assembly of block copolymers in confined space.
    Li Y; Ma R; Zhao L; Tao Q; Xiong D; An Y; Shi L
    Langmuir; 2009 Mar; 25(5):2757-64. PubMed ID: 19239189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoferritin protein cages: a novel drug nanocarrier for photodynamic therapy.
    Yan F; Zhang Y; Yuan HK; Gregas MK; Vo-Dinh T
    Chem Commun (Camb); 2008 Oct; (38):4579-81. PubMed ID: 18815689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sensitizer protonation on singlet oxygen production in aqueous and nonaqueous media.
    Arnbjerg J; Johnsen M; Nielsen CB; Jørgensen M; Ogilby PR
    J Phys Chem A; 2007 May; 111(21):4573-83. PubMed ID: 17480060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular rotation in a porphyrin dimer controls singlet oxygen production.
    Kuimova MK; Balaz M; Anderson HL; Ogilby PR
    J Am Chem Soc; 2009 Jun; 131(23):7948-9. PubMed ID: 19507899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target.
    Cheng C; Wei H; Shi BX; Cheng H; Li C; Gu ZW; Cheng SX; Zhang XZ; Zhuo RX
    Biomaterials; 2008 Feb; 29(4):497-505. PubMed ID: 17959241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.