BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17506823)

  • 21. PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoides-Eubacterium rectale group in the human intestinal microbiota.
    Maukonen J; Mättö J; Satokari R; Söderlund H; Mattila-Sandholm T; Saarela M
    FEMS Microbiol Ecol; 2006 Dec; 58(3):517-28. PubMed ID: 17117993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial and dietary factors are associated with the equol producer phenotype in healthy postmenopausal women.
    Bolca S; Possemiers S; Herregat A; Huybrechts I; Heyerick A; De Vriese S; Verbruggen M; Depypere H; De Keukeleire D; Bracke M; De Henauw S; Verstraete W; Van de Wiele T
    J Nutr; 2007 Oct; 137(10):2242-6. PubMed ID: 17885005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein.
    Hur HG; Beger RD; Heinze TM; Lay JO; Freeman JP; Dore J; Rafii F
    Arch Microbiol; 2002 Jul; 178(1):8-12. PubMed ID: 12070764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces.
    Tamura M; Tsushida T; Shinohara K
    Anaerobe; 2007 Feb; 13(1):32-5. PubMed ID: 17113326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Microbial conversion of daidzein affects fecal equol concentration and bacterial composition of rats with or without ovariectomy].
    Zhang X; Zheng W; Huang S; Yao W
    Wei Sheng Wu Xue Bao; 2012 Jul; 52(7):866-74. PubMed ID: 23115971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of daidzein by fecal bacteria in rats.
    Rafii F; Jackson LD; Ross I; Heinze TM; Lewis SM; Aidoo A; Lyn-Cook L; Manjanatha M
    Comp Med; 2007 Jun; 57(3):282-6. PubMed ID: 17605343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism of glycitein (7,4'-dihydroxy-6-methoxy-isoflavone) by human gut microflora.
    Simons AL; Renouf M; Hendrich S; Murphy PA
    J Agric Food Chem; 2005 Nov; 53(22):8519-25. PubMed ID: 16248547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of urinary lignans and phytoestrogen metabolites, potential antiestrogens and anticarcinogens, in urine of women on various habitual diets.
    Adlercreutz H; Fotsis T; Bannwart C; Wähälä K; Mäkelä T; Brunow G; Hase T
    J Steroid Biochem; 1986 Nov; 25(5B):791-7. PubMed ID: 3027456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is equol the key to the efficacy of soy foods?
    Lampe JW
    Am J Clin Nutr; 2009 May; 89(5):1664S-1667S. PubMed ID: 19357217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Research development on relation between equol and soy foods health effect].
    Liu B; Qin L; Wang P
    Wei Sheng Yan Jiu; 2010 Nov; 39(6):784-6. PubMed ID: 21351654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health.
    Atkinson C; Frankenfeld CL; Lampe JW
    Exp Biol Med (Maywood); 2005 Mar; 230(3):155-70. PubMed ID: 15734719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of dietary lignans in the reduction of breast cancer risk.
    Saarinen NM; Wärri A; Airio M; Smeds A; Mäkelä S
    Mol Nutr Food Res; 2007 Jul; 51(7):857-66. PubMed ID: 17576639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans.
    Clavel T; Borrmann D; Braune A; Doré J; Blaut M
    Anaerobe; 2006 Jun; 12(3):140-7. PubMed ID: 16765860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces.
    Yu ZT; Yao W; Zhu WY
    FEMS Microbiol Lett; 2008 May; 282(1):73-80. PubMed ID: 18328079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol.
    Struijs K; Vincken JP; Gruppen H
    J Appl Microbiol; 2009 Jul; 107(1):308-17. PubMed ID: 19302311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Levels of urinary isoflavones and lignan polyphenols in Japanese women.
    Liu W; Tanabe M; Harada KH; Koizumi A
    Environ Health Prev Med; 2013 Sep; 18(5):394-400. PubMed ID: 23632985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of an equol-producing bacterium isolated from human faeces on isoflavone and lignan metabolism in mice.
    Tamura M; Hori S; Nakagawa H; Yamauchi S; Sugahara T
    J Sci Food Agric; 2016 Jul; 96(9):3126-32. PubMed ID: 26455424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production.
    Atkinson C; Berman S; Humbert O; Lampe JW
    J Nutr; 2004 Mar; 134(3):596-9. PubMed ID: 14988453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria.
    Jin JS; Zhao YF; Nakamura N; Akao T; Kakiuchi N; Min BS; Hattori M
    Biol Pharm Bull; 2007 Nov; 30(11):2113-9. PubMed ID: 17978485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an
    Vázquez L; Flórez AB; Redruello B; Mayo B
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32586036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.