BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 17506889)

  • 1. A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks.
    Poustka AJ; Kühn A; Groth D; Weise V; Yaguchi S; Burke RD; Herwig R; Lehrach H; Panopoulou G
    Genome Biol; 2007; 8(5):R85. PubMed ID: 17506889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
    Ransick A; Rast JP; Minokawa T; Calestani C; Davidson EH
    Dev Biol; 2002 Jun; 246(1):132-47. PubMed ID: 12027439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo.
    Cui M; Siriwon N; Li E; Davidson EH; Peter IS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):E5029-38. PubMed ID: 25385617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene regulatory network interactions in sea urchin endomesoderm induction.
    Sethi AJ; Angerer RC; Angerer LM
    PLoS Biol; 2009 Feb; 7(2):e1000029. PubMed ID: 19192949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt6 activates endoderm in the sea urchin gene regulatory network.
    Croce J; Range R; Wu SY; Miranda E; Lhomond G; Peng JC; Lepage T; McClay DR
    Development; 2011 Aug; 138(15):3297-306. PubMed ID: 21750039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development.
    Materna SC; Howard-Ashby M; Gray RF; Davidson EH
    Dev Biol; 2006 Dec; 300(1):108-20. PubMed ID: 16997293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo.
    Röttinger E; Croce J; Lhomond G; Besnardeau L; Gache C; Lepage T
    Development; 2006 Nov; 133(21):4341-53. PubMed ID: 17038519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
    Yaguchi S; Yaguchi J; Burke RD
    Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development.
    Walton KD; Croce JC; Glenn TD; Wu SY; McClay DR
    Dev Biol; 2006 Dec; 300(1):153-64. PubMed ID: 17067570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    Oliveri P; Davidson EH; McClay DR
    Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening.
    Calestani C; Rast JP; Davidson EH
    Development; 2003 Oct; 130(19):4587-96. PubMed ID: 12925586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo.
    Yaguchi J; Angerer LM; Inaba K; Yaguchi S
    Dev Biol; 2012 Mar; 363(1):74-83. PubMed ID: 22210002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulation: gene control network in development.
    Ben-Tabou de-Leon S; Davidson EH
    Annu Rev Biophys Biomol Struct; 2007; 36():191. PubMed ID: 17291181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole mount in situ hybridization techniques for analysis of the spatial distribution of mRNAs in sea urchin embryos and early larvae.
    Erkenbrack EM; Croce JC; Miranda E; Gautam S; Martinez-Bartolome M; Yaguchi S; Range RC
    Methods Cell Biol; 2019; 151():177-196. PubMed ID: 30948007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.