BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17506890)

  • 1. A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus.
    Saka Y; Smith JC
    BMC Dev Biol; 2007 May; 7():47. PubMed ID: 17506890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional morphogen gradient in Xenopus: boundary formation and real-time transduction response.
    Kinoshita T; Jullien J; Gurdon JB
    Dev Dyn; 2006 Dec; 235(12):3189-98. PubMed ID: 17029288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment.
    Green J
    Dev Dyn; 2002 Dec; 225(4):392-408. PubMed ID: 12454918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of a functional morphogen gradient by a passive process in tissue from the early Xenopus embryo.
    McDowell N; Gurdon JB; Grainger DJ
    Int J Dev Biol; 2001; 45(1):199-207. PubMed ID: 11291847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single cells can sense their position in a morphogen gradient.
    Gurdon JB; Standley H; Dyson S; Butler K; Langon T; Ryan K; Stennard F; Shimizu K; Zorn A
    Development; 1999 Dec; 126(23):5309-17. PubMed ID: 10556056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Brachyury-like T-box transcription factor, Xbra3 in Xenopus embryo.
    Hayata T; Eisaki A; Kuroda H; Asashima M
    Dev Genes Evol; 1999 Sep; 209(9):560-3. PubMed ID: 10502113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goosecoid and mix.1 repress Brachyury expression and are required for head formation in Xenopus.
    Latinkic BV; Smith JC
    Development; 1999 Apr; 126(8):1769-79. PubMed ID: 10079237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors.
    Dyson S; Gurdon JB
    Cell; 1998 May; 93(4):557-68. PubMed ID: 9604931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development.
    Cao JM; Li SQ; Zhang HW; Shi DL
    Mech Dev; 2012; 129(9-12):263-74. PubMed ID: 22820002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Xenopus eomesodermin promoter and its concentration-dependent response to activin.
    Ryan K; Garrett N; Bourillot P; Stennard F; Gurdon JB
    Mech Dev; 2000 Jun; 94(1-2):133-46. PubMed ID: 10842065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning.
    Sander V; Reversade B; De Robertis EM
    EMBO J; 2007 Jun; 26(12):2955-65. PubMed ID: 17525737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activin signalling and response to a morphogen gradient.
    Gurdon JB; Harger P; Mitchell A; Lemaire P
    Nature; 1994 Oct; 371(6497):487-92. PubMed ID: 7935761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cell cycle arrest is necessary for bottle cell formation in the early Xenopus gastrula: integrating cell shape change, local mitotic control and mesodermal patterning.
    Kurth T
    Mech Dev; 2005 Dec; 122(12):1251-65. PubMed ID: 16275039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive and negative regulation of the transforming growth factor beta/activin target gene goosecoid by the TFII-I family of transcription factors.
    Ku M; Sokol SY; Wu J; Tussie-Luna MI; Roy AL; Hata A
    Mol Cell Biol; 2005 Aug; 25(16):7144-57. PubMed ID: 16055724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making mesoderm--upstream and downstream of Xbra.
    Smith JC
    Int J Dev Biol; 2001; 45(1):219-24. PubMed ID: 11291849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation.
    Shimizu K; Gurdon JB
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6791-6. PubMed ID: 10359791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of mesodermal gene expression patterns in early Xenopus embryos: the role of repression.
    Kurth T; Meissner S; Schäckel S; Steinbeisser H
    Dev Dyn; 2005 Jun; 233(2):418-29. PubMed ID: 15779047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradual refinement of activin-induced thresholds requires protein synthesis.
    Papin C; Smith JC
    Dev Biol; 2000 Jan; 217(1):166-72. PubMed ID: 10625543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling of gene regulatory networks in Xenopus development.
    Saka Y
    Methods Mol Biol; 2012; 917():497-513. PubMed ID: 22956106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors.
    Gazdag E; Jacobi UG; van Kruijsbergen I; Weeks DL; Veenstra GJ
    Development; 2016 Apr; 143(8):1340-50. PubMed ID: 26952988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.