These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17507287)

  • 1. Miniaturized, on-head, invasive electrode connector integrated EEG data acquisition system.
    Ives JR; Mirsattari SM; Jones D
    Clin Neurophysiol; 2007 Jul; 118(7):1633-8. PubMed ID: 17507287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplification and transmission of the EEG.
    Kamp A
    Electroencephalogr Clin Neurophysiol Suppl; 1985; 37():27-60. PubMed ID: 3859405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroencephalographic recording during transcranial magnetic stimulation in humans and animals.
    Ives JR; Rotenberg A; Poma R; Thut G; Pascual-Leone A
    Clin Neurophysiol; 2006 Aug; 117(8):1870-5. PubMed ID: 16793336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multichannel PC-based data-acquisition system for high-resolution EEG.
    Dunseath WJ; Kelly EF
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1212-7. PubMed ID: 8550064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless instrumentation system based on dry electrodes for acquiring EEG signals.
    Dias NS; Carmo JP; Mendes PM; Correia JH
    Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable electroencephalography. What is it, why is it needed, and what does it entail?
    Casson A; Yates D; Smith S; Duncan J; Rodriguez-Villegas E
    IEEE Eng Med Biol Mag; 2010; 29(3):44-56. PubMed ID: 20659857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniaturized electroencephalographic scalp electrode for optimal wearing comfort.
    Nikulin VV; Kegeles J; Curio G
    Clin Neurophysiol; 2010 Jul; 121(7):1007-14. PubMed ID: 20227914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HermesB: a continuous neural recording system for freely behaving primates.
    Santhanam G; Linderman MD; Gilja V; Afshar A; Ryu SI; Meng TH; Shenoy KV
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI compatible EEG electrode system for routine use in the epilepsy monitoring unit and intensive care unit.
    Mirsattari SM; Lee DH; Jones D; Bihari F; Ives JR
    Clin Neurophysiol; 2004 Sep; 115(9):2175-80. PubMed ID: 15294221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pseudodifferential amplifier for bioelectric events with DC-offset compensation using two-wired amplifying electrodes.
    Degen T; Jäckel H
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):300-10. PubMed ID: 16485759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinesiologic electromyography system for the computer-controlled analog and digital recording and processing of muscle action potentials of walking subjects.
    Bodem F; Brussatis F; Wunderlich T; Mertin B
    Med Prog Technol; 1981; 8(3):129-39. PubMed ID: 7311941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new EEG recording system for passive dry electrodes.
    Gargiulo G; Calvo RA; Bifulco P; Cesarelli M; Jin C; Mohamed A; van Schaik A
    Clin Neurophysiol; 2010 May; 121(5):686-93. PubMed ID: 20097606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ictal localization by invasive recording of infraslow activity with DC-coupled amplifiers.
    Kim W; Miller JW; Ojemann JG; Miller KJ
    J Clin Neurophysiol; 2009 Jun; 26(3):135-44. PubMed ID: 19424082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usefulness of a 1.5 T MRI-compatible EEG electrode system for routine use in the intensive care unit of a tertiary care hospital.
    Mirsattari SM; Davies-Schinkel C; Young GB; Sharpe MD; Ives JR; Lee DH
    Epilepsy Res; 2009 Mar; 84(1):28-32. PubMed ID: 19179047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New head exposure system for use in human provocation studies with EEG recording during GSM900- and UMTS-like exposure.
    Schmid G; Cecil S; Goger C; Trimmel M; Kuster N; Molla-Djafari H
    Bioelectromagnetics; 2007 Dec; 28(8):636-47. PubMed ID: 17654486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
    Sawan M; Salam MT; Le Lan J; Kassab A; Gelinas S; Vannasing P; Lesage F; Lassonde M; Nguyen DK
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):186-95. PubMed ID: 23853301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sampling theorem for EEG electrode configuration.
    Vaidyanathan C; Buckley KM
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):94-7. PubMed ID: 9214788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording.
    Vyssotski AL; Serkov AN; Itskov PM; Dell'Omo G; Latanov AV; Wolfer DP; Lipp HP
    J Neurophysiol; 2006 Feb; 95(2):1263-73. PubMed ID: 16236777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-band EEG (FbEEG): an emerging standard in electroencephalography.
    Vanhatalo S; Voipio J; Kaila K
    Clin Neurophysiol; 2005 Jan; 116(1):1-8. PubMed ID: 15589176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of spatial sampling error in the infant and adult electroencephalogram.
    Grieve PG; Emerson RG; Isler JR; Stark RI
    Neuroimage; 2004 Apr; 21(4):1260-74. PubMed ID: 15050554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.