BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17507379)

  • 1. Analysis of a parallel branch in the mitomycin biosynthetic pathway involving the mitN-encoded aziridine N-methyltransferase.
    Sitachitta N; Lopanik NB; Mao Y; Sherman DH
    J Biol Chem; 2007 Jul; 282(29):20941-7. PubMed ID: 17507379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564.
    Mao Y; Varoglu M; Sherman DH
    Chem Biol; 1999 Apr; 6(4):251-63. PubMed ID: 10099135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyquinone O-methylation in mitomycin biosynthesis.
    Grüschow S; Chang LC; Mao Y; Sherman DH
    J Am Chem Soc; 2007 May; 129(20):6470-6. PubMed ID: 17461583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the mitomycin biosynthetic pathway by functional analysis of the MitM aziridine N-methyltransferase.
    Varoglu M; Mao Y; Sherman DH
    J Am Chem Soc; 2001 Jul; 123(27):6712-3. PubMed ID: 11439066
    [No Abstract]   [Full Text] [Related]  

  • 5. Determination of the Protein-Protein Interactions within Acyl Carrier Protein (MmcB)-Dependent Modifications in the Biosynthesis of Mitomycin.
    Leng D; Sheng Y; Wang H; Wei J; Ou Y; Deng Z; Bai L; Kang Q
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible synthesis of the mitomycin C resistance gene product (MCRA) from Streptomyces lavendulae.
    August PR; Rahn JA; Flickinger MC; Sherman DH
    Gene; 1996 Oct; 175(1-2):261-7. PubMed ID: 8917108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the mitomycin 7-O-methyltransferase.
    Singh S; Chang A; Goff RD; Bingman CA; Grüschow S; Sherman DH; Phillips GN; Thorson JS
    Proteins; 2011 Jul; 79(7):2181-8. PubMed ID: 21538548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of reductively activated mitomycin C with aqueous bicarbonate: Isolation and characterization of an oxazolidinone derivative of cis-1-hydroxy-2,7-diaminomitosene.
    Paz MM
    Bioorg Med Chem Lett; 2010 Jan; 20(1):31-4. PubMed ID: 19954979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of mitomycin C resistance in streptomyces: structure and function of the MRD protein.
    Martin TW; Dauter Z; Devedjiev Y; Sheffield P; Jelen F; He M; Sherman DH; Otlewski J; Derewenda ZS; Derewenda U
    Structure; 2002 Jul; 10(7):933-42. PubMed ID: 12121648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitomycin resistance in Streptomyces lavendulae includes a novel drug-binding-protein-dependent export system.
    Sheldon PJ; Mao Y; He M; Sherman DH
    J Bacteriol; 1999 Apr; 181(8):2507-12. PubMed ID: 10198016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthetic studies of aziridine formation in azicemicins.
    Ogasawara Y; Liu HW
    J Am Chem Soc; 2009 Dec; 131(50):18066-8. PubMed ID: 19928906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Acyl Carrier Protein-Dependent Glycosyltransferase in Mitomycin C Biosynthesis.
    Nguyen HP; Yokoyama K
    Biochemistry; 2019 Jun; 58(25):2804-2808. PubMed ID: 31188570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli.
    Jin HJ; Yang YD
    Protein Expr Purif; 2002 Jun; 25(1):149-59. PubMed ID: 12071710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative stereochemistry in the aziridine ring openings of N-methylmitomycin A and 7-methoxy-1,2-(N-methylaziridino)mitosene.
    Cheng L; Remers WA
    J Med Chem; 1977 Jun; 20(6):767-70. PubMed ID: 874953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Basis for Enzymatic Aziridine Formation via Sulfate Elimination.
    Kurosawa S; Hasebe F; Okamura H; Yoshida A; Matsuda K; Sone Y; Tomita T; Shinada T; Takikawa H; Kuzuyama T; Kosono S; Nishiyama M
    J Am Chem Soc; 2022 Sep; 144(35):16164-16170. PubMed ID: 35998388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of potential early-stage intermediates in the biosynthesis of FR900482 and mitomycin C.
    Chamberland S; Grüschow S; Sherman DH; Williams RM
    Org Lett; 2009 Feb; 11(4):791-4. PubMed ID: 19161340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sodium arsenite on the biosynthesis of mitomycins by Streptomyces caespitosus and mode of action of mitomycin C on Bacillus subtilis NRRL B-543.
    Abou-Zeid AA; Yousef AA
    Folia Microbiol (Praha); 1976; 21(1):36-42. PubMed ID: 814067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cloning of mitomycin C resistance gene from Streptoverticillium caespitosum ATCC27422 and studying its function].
    Huang J; Lu X; Mao Y; Yang Y; Jiao R
    Wei Sheng Wu Xue Bao; 1999 Dec; 39(6):495-502. PubMed ID: 12555553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro activity of C-20 methyltransferase, BchU, involved in bacteriochlorophyll c biosynthetic pathway in green sulfur bacteria.
    Harada J; Saga Y; Yaeda Y; Oh-Oka H; Tamiaki H
    FEBS Lett; 2005 Mar; 579(9):1983-7. PubMed ID: 15792807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of the biosynthetic gene cluster for naphthoxanthene antibiotic FD-594 from Streptomyces sp. TA-0256.
    Kudo F; Yonezawa T; Komatsubara A; Mizoue K; Eguchi T
    J Antibiot (Tokyo); 2011 Jan; 64(1):123-32. PubMed ID: 21102601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.