These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17507642)

  • 1. Validity of the walking scale for spinal cord injury and other domains of function in a multicenter clinical trial.
    Ditunno JF; Barbeau H; Dobkin BH; Elashoff R; Harkema S; Marino RJ; Hauck WW; Apple D; Basso DM; Behrman A; Deforge D; Fugate L; Saulino M; Scott M; Chung J;
    Neurorehabil Neural Repair; 2007; 21(6):539-50. PubMed ID: 17507642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of the walking index for spinal cord injury in a US and European clinical population.
    Ditunno JF; Scivoletto G; Patrick M; Biering-Sorensen F; Abel R; Marino R
    Spinal Cord; 2008 Mar; 46(3):181-8. PubMed ID: 17502878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reproducibility and convergent validity of the walking index for spinal cord injury (WISCI) in chronic spinal cord injury.
    Burns AS; Delparte JJ; Patrick M; Marino RJ; Ditunno JF
    Neurorehabil Neural Repair; 2011 Feb; 25(2):149-57. PubMed ID: 21239706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial.
    Dobkin B; Barbeau H; Deforge D; Ditunno J; Elashoff R; Apple D; Basso M; Behrman A; Harkema S; Saulino M; Scott M;
    Neurorehabil Neural Repair; 2007; 21(1):25-35. PubMed ID: 17172551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle force and gait performance: relationships after spinal cord injury.
    Wirz M; van Hedel HJ; Rupp R; Curt A; Dietz V
    Arch Phys Med Rehabil; 2006 Sep; 87(9):1218-22. PubMed ID: 16935058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study.
    Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M
    Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial.
    Esclarín-Ruz A; Alcobendas-Maestro M; Casado-Lopez R; Perez-Mateos G; Florido-Sanchez MA; Gonzalez-Valdizan E; Martin JL
    Arch Phys Med Rehabil; 2014 Jun; 95(6):1023-31. PubMed ID: 24393781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury.
    Ma TT; Zhang Q; Zhou TT; Zhang YQ; He Y; Li SJ; Liu QJ
    NeuroRehabilitation; 2022; 51(3):499-508. PubMed ID: 35964210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construct Validity of the Gait Deviation Index for People With Incomplete Spinal Cord Injury (GDI-SCI).
    Sinovas-Alonso I; Herrera-Valenzuela D; de-Los-Reyes-Guzmán A; Cano-de-la-Cuerda R; Del-Ama AJ; Gil-Agudo Á
    Neurorehabil Neural Repair; 2023 Oct; 37(10):705-715. PubMed ID: 37864467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking index for spinal cord injury (WISCI): criterion validation.
    Morganti B; Scivoletto G; Ditunno P; Ditunno JF; Molinari M
    Spinal Cord; 2005 Jan; 43(1):27-33. PubMed ID: 15520841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury.
    DiPiro ND; Embry AE; Fritz SL; Middleton A; Krause JS; Gregory CM
    Spinal Cord; 2016 Sep; 54(9):675-81. PubMed ID: 26666508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury.
    Zörner B; Blanckenhorn WU; Dietz V; ; Curt A
    J Neurotrauma; 2010 Jan; 27(1):241-52. PubMed ID: 19645527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility, safety, and functional outcomes using the neurological controlled Hybrid Assistive Limb exoskeleton (HAL®) following acute incomplete and complete spinal cord injury - Results of 50 patients.
    Aach M; Schildhauer TA; Zieriacks A; Jansen O; Weßling M; Brinkemper A; Grasmücke D
    J Spinal Cord Med; 2023 Jul; 46(4):574-581. PubMed ID: 37083596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking during daily life can be validly and responsively assessed in subjects with a spinal cord injury.
    van Hedel HJ; Dietz V;
    Neurorehabil Neural Repair; 2009 Feb; 23(2):117-24. PubMed ID: 18997156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review.
    Nam KY; Kim HJ; Kwon BS; Park JW; Lee HJ; Yoo A
    J Neuroeng Rehabil; 2017 Mar; 14(1):24. PubMed ID: 28330471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent validity of single and groups of walking assessments following acute spinal cord injury.
    Aigner A; Curt A; Tanadini LG; Maathuis MH
    Spinal Cord; 2017 May; 55(5):435-440. PubMed ID: 27845354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.