These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1197 related articles for article (PubMed ID: 17508288)
1. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [TBL] [Abstract][Full Text] [Related]
2. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
3. Membrane-activated microfluidic rotary devices for pumping and mixing. Tseng HY; Wang CH; Lin WY; Lee GB Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices. Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154 [TBL] [Abstract][Full Text] [Related]
5. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture. Wu MH; Huang SB; Cui Z; Cui Z; Lee GB Biomed Microdevices; 2008 Apr; 10(2):309-19. PubMed ID: 18026840 [TBL] [Abstract][Full Text] [Related]
6. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Wang CH; Lee GB Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430 [TBL] [Abstract][Full Text] [Related]
7. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111 [TBL] [Abstract][Full Text] [Related]
8. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches. Lai CW; Lin YH; Lee GB Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177 [TBL] [Abstract][Full Text] [Related]
9. A micro circulating PCR chip using a suction-type membrane for fluidic transport. Chien LJ; Wang JH; Hsieh TM; Chen PH; Chen PJ; Lee DS; Luo CH; Lee GB Biomed Microdevices; 2009 Apr; 11(2):359-67. PubMed ID: 18975094 [TBL] [Abstract][Full Text] [Related]
10. An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection. Huang FC; Liao CS; Lee GB Electrophoresis; 2006 Aug; 27(16):3297-305. PubMed ID: 16865670 [TBL] [Abstract][Full Text] [Related]
11. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Zhang C; Xing D; Li Y Biotechnol Adv; 2007; 25(5):483-514. PubMed ID: 17601695 [TBL] [Abstract][Full Text] [Related]
13. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency. Wang Z; Hansen O; Petersen PK; Rogeberg A; Kutter JP; Bang DD; Wolff A Electrophoresis; 2006 Dec; 27(24):5081-92. PubMed ID: 17161009 [TBL] [Abstract][Full Text] [Related]
14. Integrated AC electrokinetic cell separation in a closed-loop device. Gagnon Z; Mazur J; Chang HC Lab Chip; 2010 Mar; 10(6):718-26. PubMed ID: 20221559 [TBL] [Abstract][Full Text] [Related]
15. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Chen X; Cui D; Liu C; Li H; Chen J Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610 [TBL] [Abstract][Full Text] [Related]
16. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Du Z; Cheng KH; Vaughn MW; Collie NL; Gollahon LS Biomed Microdevices; 2007 Feb; 9(1):35-42. PubMed ID: 17103049 [TBL] [Abstract][Full Text] [Related]
17. A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Liu YJ; Guo SS; Zhang ZL; Huang WH; Baigl D; Xie M; Chen Y; Pang DW Electrophoresis; 2007 Dec; 28(24):4713-22. PubMed ID: 18008303 [TBL] [Abstract][Full Text] [Related]
18. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159 [TBL] [Abstract][Full Text] [Related]
19. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Park K; Suk HJ; Akin D; Bashir R Lab Chip; 2009 Aug; 9(15):2224-9. PubMed ID: 19606300 [TBL] [Abstract][Full Text] [Related]
20. Continuous separation of particles using a microfluidic device equipped with flow rate control valves. Sai Y; Yamada M; Yasuda M; Seki M J Chromatogr A; 2006 Sep; 1127(1-2):214-20. PubMed ID: 16890945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]