These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17508377)

  • 1. Novel transition-metal-free heterogeneous epoxidation catalysts discovered by means of high-throughput experimentation.
    Pescarmona PP; Janssen KP; Jacobs PA
    Chemistry; 2007; 13(23):6562-72. PubMed ID: 17508377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-metal-free catalysts for the sustainable epoxidation of alkenes: from discovery to optimisation by means of high throughput experimentation.
    Lueangchaichaweng W; Geukens I; Peeters A; Jarry B; Launay F; Bonardet JL; Jacobs PA; Pescarmona PP
    Comb Chem High Throughput Screen; 2012 Feb; 15(2):140-51. PubMed ID: 21902643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts.
    Wachs IE; Jehng JM; Ueda W
    J Phys Chem B; 2005 Feb; 109(6):2275-84. PubMed ID: 16851220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic dehydration of ethanol using transition metal oxide catalysts.
    Zaki T
    J Colloid Interface Sci; 2005 Apr; 284(2):606-13. PubMed ID: 15780300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.
    Zhang L; Abbenhuis HC; Gerritsen G; Bhriain NN; Magusin PC; Mezari B; Han W; van Santen RA; Yang Q; Li C
    Chemistry; 2007; 13(4):1210-21. PubMed ID: 17066470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion.
    Blank JH; Beckers J; Collignon PF; Rothenberg G
    Chemphyschem; 2007 Dec; 8(17):2490-7. PubMed ID: 18022996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silsesquioxane-based homogeneous and heterogeneous epoxidation catalysts developed by using high-speed experimentation.
    Pescarmona PP; van der Waal JC; Maschmeyer T
    Chemistry; 2004 Apr; 10(7):1657-65. PubMed ID: 15054752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of aluminium borate-boron oxide and binary titanium-boron and zirconium-boron oxides from metal alkoxides and (MeO)3B3O3 in non-aqueous solvents.
    Beckett MA; Rugen-Hankey MP; Timmis JL; Varma KS
    Dalton Trans; 2008 Mar; (11):1503-6. PubMed ID: 18322631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy.
    Wachs IE; Roberts CA
    Chem Soc Rev; 2010 Dec; 39(12):5002-17. PubMed ID: 21038054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Styrene synthesis over iron oxide catalysts: from single crystal model system to real catalysts.
    Schüle A; Nieken U; Shekhah O; Ranke W; Schlögl R; Kolios G
    Phys Chem Chem Phys; 2007 Jul; 9(27):3619-34. PubMed ID: 17612726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity.
    Liotta LF; Gruttadauria M; Di Carlo G; Perrini G; Librando V
    J Hazard Mater; 2009 Mar; 162(2-3):588-606. PubMed ID: 18586389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure.
    Somorjai GA; Park JY
    J Chem Phys; 2008 May; 128(18):182504. PubMed ID: 18532789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of heterogeneous base catalysts for biodiesel production.
    Kawashima A; Matsubara K; Honda K
    Bioresour Technol; 2008 Jun; 99(9):3439-43. PubMed ID: 17884464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallium oxide nanorods: novel, template-free synthesis and high catalytic activity in epoxidation reactions.
    Lueangchaichaweng W; Brooks NR; Fiorilli S; Gobechiya E; Lin K; Li L; Parres-Esclapez S; Javon E; Bals S; Van Tendeloo G; Martens JA; Kirschhock CE; Jacobs PA; Pescarmona PP
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1585-9. PubMed ID: 24453173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity.
    Nhi BD; Akhmadullin RM; Akhmadullina AG; Samuilov YD; Aghajanian SI
    Chemphyschem; 2013 Dec; 14(18):4149-57. PubMed ID: 24243767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts.
    Weidenhof B; Reiser M; Stöwe K; Maier WF; Kim M; Azurdia J; Gulari E; Seker E; Barks A; Laine RM
    J Am Chem Soc; 2009 Jul; 131(26):9207-19. PubMed ID: 19566095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.