These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 17508415)
1. Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting. Miranda P; Pajares A; Saiz E; Tomsia AP; Guiberteau F J Biomed Mater Res A; 2007 Dec; 83(3):646-55. PubMed ID: 17508415 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. Miranda P; Pajares A; Saiz E; Tomsia AP; Guiberteau F J Biomed Mater Res A; 2008 Apr; 85(1):218-27. PubMed ID: 17688280 [TBL] [Abstract][Full Text] [Related]
3. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Miranda P; Pajares A; Guiberteau F Acta Biomater; 2008 Nov; 4(6):1715-24. PubMed ID: 18583207 [TBL] [Abstract][Full Text] [Related]
4. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Martínez-Vázquez FJ; Perera FH; Miranda P; Pajares A; Guiberteau F Acta Biomater; 2010 Nov; 6(11):4361-8. PubMed ID: 20566307 [TBL] [Abstract][Full Text] [Related]
5. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Miranda P; Saiz E; Gryn K; Tomsia AP Acta Biomater; 2006 Jul; 2(4):457-66. PubMed ID: 16723287 [TBL] [Abstract][Full Text] [Related]
6. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Michna S; Wu W; Lewis JA Biomaterials; 2005 Oct; 26(28):5632-9. PubMed ID: 15878368 [TBL] [Abstract][Full Text] [Related]
7. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
8. Reinforcing bioceramic scaffolds with in situ synthesized ε-polycaprolactone coatings. Martínez-Vázquez FJ; Miranda P; Guiberteau F; Pajares A J Biomed Mater Res A; 2013 Dec; 101(12):3551-9. PubMed ID: 23629876 [TBL] [Abstract][Full Text] [Related]
9. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. Dellinger JG; Cesarano J; Jamison RD J Biomed Mater Res A; 2007 Aug; 82(2):383-94. PubMed ID: 17295231 [TBL] [Abstract][Full Text] [Related]
10. Thermal residual stresses near the interface between plasma-sprayed hydroxyapatite coating and titanium substrate: finite element analysis and synchrotron radiation measurements. Cofino B; Fogarassy P; Millet P; Lodini A J Biomed Mater Res A; 2004 Jul; 70(1):20-7. PubMed ID: 15174105 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758 [TBL] [Abstract][Full Text] [Related]
12. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. Simon JL; Michna S; Lewis JA; Rekow ED; Thompson VP; Smay JE; Yampolsky A; Parsons JR; Ricci JL J Biomed Mater Res A; 2007 Dec; 83(3):747-58. PubMed ID: 17559109 [TBL] [Abstract][Full Text] [Related]
13. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. Sandino C; Planell JA; Lacroix D J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075 [TBL] [Abstract][Full Text] [Related]
14. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
15. Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic" electroless coprecipitation route. Oliveira JM; Costa SA; Leonor IB; Malafaya PB; Mano JF; Reis RL J Biomed Mater Res A; 2009 Feb; 88(2):470-80. PubMed ID: 18306322 [TBL] [Abstract][Full Text] [Related]
16. Impregnation of β-tricalcium phosphate robocast scaffolds by in situ polymerization. Martínez-Vázquez FJ; Perera FH; van der Meulen I; Heise A; Pajares A; Miranda P J Biomed Mater Res A; 2013 Nov; 101(11):3086-96. PubMed ID: 23526780 [TBL] [Abstract][Full Text] [Related]
17. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. Fritsch A; Dormieux L; Hellmich C; Sanahuja J J Biomed Mater Res A; 2009 Jan; 88(1):149-61. PubMed ID: 18286602 [TBL] [Abstract][Full Text] [Related]
18. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L; Güçeri S; Wen X; Gandhi M; Sun W Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [TBL] [Abstract][Full Text] [Related]
20. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies. Cushnie EK; Khan YM; Laurencin CT J Biomed Mater Res A; 2008 Jan; 84(1):54-62. PubMed ID: 17600320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]