BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17508740)

  • 1. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems?
    Calvaresi M; Bottoni A; Garavelli M
    J Phys Chem B; 2007 Jun; 111(23):6557-70. PubMed ID: 17508740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine.
    Šebera J; Hattori Y; Sato D; Reha D; Nencka R; Kohno T; Kojima C; Tanaka Y; Sychrovský V
    Nucleic Acids Res; 2017 May; 45(9):5231-5242. PubMed ID: 28334993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-OxoG with the hOGG1 DNA repair protein.
    Šebera J; Trantírek L; Tanaka Y; Sychrovský V
    J Phys Chem B; 2012 Oct; 116(41):12535-44. PubMed ID: 22989268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase.
    Bjørås M; Seeberg E; Luna L; Pearl LH; Barrett TE
    J Mol Biol; 2002 Mar; 317(2):171-7. PubMed ID: 11902834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA.
    Bruner SD; Norman DP; Verdine GL
    Nature; 2000 Feb; 403(6772):859-66. PubMed ID: 10706276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
    Luo N; Mehler E; Osman R
    Biochemistry; 1999 Jul; 38(29):9209-20. PubMed ID: 10413495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of active site residues in the glycosylase step of T4 endonuclease V. Computer simulation studies on ionization states.
    Fuxreiter M; Warshel A; Osman R
    Biochemistry; 1999 Jul; 38(30):9577-89. PubMed ID: 10423235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of the human DNA repair protein HOGG1 activity.
    Schyman P; Danielsson J; Pinak M; Laaksonen A
    J Phys Chem A; 2005 Mar; 109(8):1713-9. PubMed ID: 16833496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
    Guan Y; Manuel RC; Arvai AS; Parikh SS; Mol CD; Miller JH; Lloyd S; Tainer JA
    Nat Struct Biol; 1998 Dec; 5(12):1058-64. PubMed ID: 9846876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaving group activation by aromatic stacking: an alternative to general acid catalysis.
    Versées W; Loverix S; Vandemeulebroucke A; Geerlings P; Steyaert J
    J Mol Biol; 2004 Apr; 338(1):1-6. PubMed ID: 15050818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 8-oxoguanine lesioned B-DNA molecule complexed with repair enzyme hOGG1: a molecular dynamics study.
    Pinak M
    J Comput Chem; 2003 May; 24(7):898-907. PubMed ID: 12692799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular biology: ensuring error-free DNA repair.
    Lindahl T
    Nature; 2004 Feb; 427(6975):598. PubMed ID: 14961108
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational evidence for the catalytic mechanism of glutaminyl cyclase. A DFT investigation.
    Calvaresi M; Garavelli M; Bottoni A
    Proteins; 2008 Nov; 73(3):527-38. PubMed ID: 18470930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New non-hydrolyzable substrate analogs for 8-oxoguanine-DNA glycosylases].
    Taraneneko MV; Volkov EM; Saparbarv MK; Kuznetsov SA
    Mol Biol (Mosk); 2004; 38(5):858-68. PubMed ID: 15554188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic and conformational flexibility of the covalent linkage formed during β-lyase activity on an AP-site: application to hOgg1.
    Kellie JL; Wetmore SD
    J Phys Chem B; 2012 Sep; 116(35):10786-97. PubMed ID: 22877319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-methylpurine DNA glycosylase and 8-oxoguanine dna glycosylase metabolize the antiviral nucleoside 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole.
    Lorenzi PL; Landowski CP; Brancale A; Song X; Townsend LB; Drach JC; Amidon GL
    Drug Metab Dispos; 2006 Jun; 34(6):1070-7. PubMed ID: 16565170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.