These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17508815)

  • 1. Continuously broken ergodicity.
    Mauro JC; Gupta PK; Loucks RJ
    J Chem Phys; 2007 May; 126(18):184511. PubMed ID: 17508815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabasin approach for computing the master equation dynamics of systems with broken ergodicity.
    Mauro JC; Loucks RJ; Gupta PK
    J Phys Chem A; 2007 Aug; 111(32):7957-65. PubMed ID: 17649986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosing broken ergodicity using an energy fluctuation metric.
    de Souza VK; Wales DJ
    J Chem Phys; 2005 Oct; 123(13):134504. PubMed ID: 16223311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical relaxation and the notion of time-dependent extent of ergodicity during the glass transition.
    Johari GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021501. PubMed ID: 21928991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems.
    Mauro JC; Loucks RJ; Sen S
    J Chem Phys; 2010 Oct; 133(16):164503. PubMed ID: 21033801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of computing: Entropy of nonergodic systems.
    Ishioka S; Fuchikami N
    Chaos; 2001 Sep; 11(3):734-746. PubMed ID: 12779512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comment on "Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems" [J. Chem. Phys. 133, 164503 (2010)].
    Johari GP
    J Chem Phys; 2011 Apr; 134(14):147101; author reply 147102. PubMed ID: 21495772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of thermodynamic phase transition in a model glass former.
    Santen L; Krauth W
    Nature; 2000 Jun; 405(6786):550-1. PubMed ID: 10850709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Percolation approach to glassy dynamics with continuously broken ergodicity.
    Arenzon JJ; Coniglio A; Fierro A; Sellitto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020301. PubMed ID: 25215672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-space observation of ergodicity transitions in artificial spin ice.
    Saccone M; Caravelli F; Hofhuis K; Dhuey S; Scholl A; Nisoli C; Farhan A
    Nat Commun; 2023 Sep; 14(1):5674. PubMed ID: 37704596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional kinetics emerging from ergodicity breaking in random media.
    Molina-García D; Pham TM; Paradisi P; Manzo C; Pagnini G
    Phys Rev E; 2016 Nov; 94(5-1):052147. PubMed ID: 27967076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical mechanics of time independent nondissipative nonequilibrium states.
    Williams SR; Evans DJ
    J Chem Phys; 2007 Nov; 127(18):184101. PubMed ID: 18020624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system.
    Ding D; Bai Z; Liu Z; Shi B; Guo G; Li W; Adams CS
    Sci Adv; 2024 Mar; 10(9):eadl5893. PubMed ID: 38437588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion: testing ergodicity breaking in experimental data.
    Magdziarz M; Weron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051138. PubMed ID: 22181399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ergodicity Breaking Transition in Zero Dimensions.
    Šuntajs J; Vidmar L
    Phys Rev Lett; 2022 Aug; 129(6):060602. PubMed ID: 36018665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ergodicity breaking in rapidly rotating C
    Liu LR; Rosenberg D; Changala PB; Crowley PJD; Nesbitt DJ; Yao NY; Tscherbul TV; Ye J
    Science; 2023 Aug; 381(6659):778-783. PubMed ID: 37590361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical dynamics of dimers: implications for the glass transition.
    Das D; Farrell G; Kondev J; Chakraborty B
    J Phys Chem B; 2005 Nov; 109(45):21413-8. PubMed ID: 16853778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic order-disorder in atomistic models of structural glass formers.
    Hedges LO; Jack RL; Garrahan JP; Chandler D
    Science; 2009 Mar; 323(5919):1309-13. PubMed ID: 19197025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ergodic-to-nonergodic phase inversion and reentrant ergodicity transition in DNA-nanoclay dispersions.
    Arfin N; Bohidar HB
    Soft Matter; 2014 Jan; 10(1):149-56. PubMed ID: 24652438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist.
    Meroz Y; Sokolov IM; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.