BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17509738)

  • 21. Biomechanics of increased exposure to lumbar injury caused by cyclic loading: Part 1. Loss of reflexive muscular stabilization.
    Solomonow M; Zhou BH; Baratta RV; Lu Y; Harris M
    Spine (Phila Pa 1976); 1999 Dec; 24(23):2426-34. PubMed ID: 10626304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The time-varying response of the in vivo lumbar spine to dynamic repetitive flexion.
    Parkinson RJ; Beach TA; Callaghan JP
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):330-6. PubMed ID: 15109751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuromuscular control of lumbar instability following static work of various loads.
    Le B; Davidson B; Solomonow D; Zhou BH; Lu Y; Patel V; Solomonow M
    Muscle Nerve; 2009 Jan; 39(1):71-82. PubMed ID: 19086067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High magnitude cyclic load triggers inflammatory response in lumbar ligaments.
    King K; Davidson B; Zhou BH; Lu Y; Solomonow M
    Clin Biomech (Bristol, Avon); 2009 Dec; 24(10):792-8. PubMed ID: 19703727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-frequency loading of lumbar ligaments increases proinflammatory cytokines expression in a feline model of repetitive musculoskeletal disorder.
    Pinski SE; King KB; Davidson BS; Zhou BH; Lu Y; Solomonow M
    Spine J; 2010 Dec; 10(12):1078-85. PubMed ID: 20933478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A method to quantify frequency and duration of sustained low-level muscle activity as a risk factor for musculoskeletal discomfort.
    Østensvik T; Veiersted KB; Nilsen P
    J Electromyogr Kinesiol; 2009 Apr; 19(2):283-94. PubMed ID: 17900930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pro-inflammatory cytokines expression increases following low- and high-magnitude cyclic loading of lumbar ligaments.
    D'Ambrosia P; King K; Davidson B; Zhou BH; Lu Y; Solomonow M
    Eur Spine J; 2010 Aug; 19(8):1330-9. PubMed ID: 20336330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intervertebral disc recovery after dynamic or static loading in vitro: is there a role for the endplate?
    van der Veen AJ; van Dieën JH; Nadort A; Stam B; Smit TH
    J Biomech; 2007; 40(10):2230-5. PubMed ID: 17182043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc.
    Wang JL; Wu TK; Lin TC; Cheng CH; Huang SC
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1863-9. PubMed ID: 18670339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic loading alters biomechanical properties and secretion of PGE2 and NO from tendon explants.
    Flick J; Devkota A; Tsuzaki M; Almekinders L; Weinhold P
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):99-106. PubMed ID: 16198031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spine loading as a function of lift frequency, exposure duration, and work experience.
    Marras WS; Parakkat J; Chany AM; Yang G; Burr D; Lavender SA
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):345-52. PubMed ID: 16310299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in vivo assessment of the low back response to prolonged flexion: Interplay between active and passive tissues.
    Shin G; Mirka GA
    Clin Biomech (Bristol, Avon); 2007 Nov; 22(9):965-71. PubMed ID: 17709161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing.
    Marras WS; Knapik GG; Ferguson S
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):155-63. PubMed ID: 19111950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue.
    Solomonow M; Baratta RV; Zhou BH; Burger E; Zieske A; Gedalia A
    J Electromyogr Kinesiol; 2003 Aug; 13(4):381-96. PubMed ID: 12832168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intervertebral neural foramina deformation due to two types of repetitive combined loading.
    Drake JD; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):1-6. PubMed ID: 19008024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensory-motor control of ligaments and associated neuromuscular disorders.
    Solomonow M
    J Electromyogr Kinesiol; 2006 Dec; 16(6):549-67. PubMed ID: 17045488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuromuscular neutral zones associated with viscoelastic hysteresis during cyclic lumbar flexion.
    Solomonow M; Eversull E; He Zhou B; Baratta RV; Zhu MP
    Spine (Phila Pa 1976); 2001 Jul; 26(14):E314-24. PubMed ID: 11462097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting.
    Gallagher S; Marras WS; Litsky AS; Burr D; Landoll J; Matkovic V
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1832-9. PubMed ID: 17762290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response analysis of the lumbar spine during regular daily activities--a finite element analysis.
    Schmidt H; Shirazi-Adl A; Galbusera F; Wilke HJ
    J Biomech; 2010 Jul; 43(10):1849-56. PubMed ID: 20394933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.
    Groth KM; Granata KP
    J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.