These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17510016)

  • 1. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities.
    Seibel BA; Drazen JC
    Philos Trans R Soc Lond B Biol Sci; 2007 Nov; 362(1487):2061-78. PubMed ID: 17510016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.
    Brown A; Thatje S
    Biol Rev Camb Philos Soc; 2014 May; 89(2):406-26. PubMed ID: 24118851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase.
    Torres JJ; Grigsby MD; Clarke ME
    J Exp Biol; 2012 Jun; 215(Pt 11):1905-14. PubMed ID: 22573769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web.
    Allgeier JE; Wenger SJ; Rosemond AD; Schindler DE; Layman CA
    Proc Natl Acad Sci U S A; 2015 May; 112(20):E2640-7. PubMed ID: 25877152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea.
    Brown A; Hauton C; Stratmann T; Sweetman A; van Oevelen D; Jones DOB
    R Soc Open Sci; 2018 May; 5(5):172162. PubMed ID: 29892403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein metabolism in marine animals: the underlying mechanism of growth.
    Fraser KP; Rogers AD
    Adv Mar Biol; 2007; 52():267-362. PubMed ID: 17298892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of changing climate on faunal depth distributions determine winners and losers.
    Brown A; Thatje S
    Glob Chang Biol; 2015 Jan; 21(1):173-80. PubMed ID: 25044552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes.
    Pörtner HO
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Oct; 133(2):303-21. PubMed ID: 12208302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design.
    Baco AR; Etter RJ; Ribeiro PA; von der Heyden S; Beerli P; Kinlan BP
    Mol Ecol; 2016 Jul; 25(14):3276-98. PubMed ID: 27146215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-sea diversity patterns are shaped by energy availability.
    Woolley SN; Tittensor DP; Dunstan PK; Guillera-Arroita G; Lahoz-Monfort JJ; Wintle BA; Worm B; O'Hara TD
    Nature; 2016 May; 533(7603):393-6. PubMed ID: 27193685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological principles of World Ocean monitoring.
    Izrael YA; Tsiban AV
    Environ Monit Assess; 1982 Dec; 2(4):425-33. PubMed ID: 24264354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First insights into the biodiversity and biogeography of the Southern Ocean deep sea.
    Brandt A; Gooday AJ; Brandão SN; Brix S; Brökeland W; Cedhagen T; Choudhury M; Cornelius N; Danis B; De Mesel I; Diaz RJ; Gillan DC; Ebbe B; Howe JA; Janussen D; Kaiser S; Linse K; Malyutina M; Pawlowski J; Raupach M; Vanreusel A
    Nature; 2007 May; 447(7142):307-11. PubMed ID: 17507981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deep-sea under global change.
    Danovaro R; Corinaldesi C; Dell'Anno A; Snelgrove PVR
    Curr Biol; 2017 Jun; 27(11):R461-R465. PubMed ID: 28586679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolutionary ecology of offspring size in marine invertebrates.
    Marshall DJ; Keough MJ
    Adv Mar Biol; 2007; 53():1-60. PubMed ID: 17936135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life in the unthinking depths: energetic constraints on encephalization in marine fishes.
    Iglesias TL; Dornburg A; Brandley MC; Alfaro ME; Warren DL
    J Evol Biol; 2015 May; 28(5):1080-90. PubMed ID: 25818759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate.
    Carey N; Harianto J; Byrne M
    J Exp Biol; 2016 Apr; 219(Pt 8):1178-86. PubMed ID: 26896541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascading top-down effects of changing oceanic predator abundances.
    Baum JK; Worm B
    J Anim Ecol; 2009 Jul; 78(4):699-714. PubMed ID: 19298616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia Tolerance and Metabolic Suppression in Oxygen Minimum Zone Euphausiids: Implications for Ocean Deoxygenation and Biogeochemical Cycles.
    Seibel BA; Schneider JL; Kaartvedt S; Wishner KF; Daly KL
    Integr Comp Biol; 2016 Oct; 56(4):510-23. PubMed ID: 27507237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity.
    Widder EA
    Science; 2010 May; 328(5979):704-8. PubMed ID: 20448176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the role of temperature in the ocean through metabolic scaling.
    Bruno JF; Carr LA; O'Connor MI
    Ecology; 2015 Dec; 96(12):3126-40. PubMed ID: 26909420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.