These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17510016)

  • 21. Ecological pressures and the contrasting scaling of metabolism and body shape in coexisting taxa: cephalopods versus teleost fish.
    Tan H; Hirst AG; Glazier DS; Atkinson D
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180543. PubMed ID: 31203759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca).
    Seibel BA
    J Exp Biol; 2007 Jan; 210(Pt 1):1-11. PubMed ID: 17170143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.
    Sunday JM; Pecl GT; Frusher S; Hobday AJ; Hill N; Holbrook NJ; Edgar GJ; Stuart-Smith R; Barrett N; Wernberg T; Watson RA; Smale DA; Fulton EA; Slawinski D; Feng M; Radford BT; Thompson PA; Bates AE
    Ecol Lett; 2015 Sep; 18(9):944-53. PubMed ID: 26189556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The evolution of growth trajectories: what limits growth rate?
    Dmitriew CM
    Biol Rev Camb Philos Soc; 2011 Feb; 86(1):97-116. PubMed ID: 20394607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 35 Years of Marine Natural Product Research in Sweden: Cool Molecules and Models from Cold Waters.
    Bohlin L; Cárdenas P; Backlund A; Göransson U
    Prog Mol Subcell Biol; 2017; 55():1-34. PubMed ID: 28238034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term oceanographic and ecological research in the Western English Channel.
    Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ
    Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.
    Taylor ML; Roterman CN
    Mol Ecol; 2017 Oct; 26(19):4872-4896. PubMed ID: 28833857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal limits to the geographic distributions of shallow-water marine species.
    Stuart-Smith RD; Edgar GJ; Bates AE
    Nat Ecol Evol; 2017 Dec; 1(12):1846-1852. PubMed ID: 29062125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution and biogeography of deep-sea vent and seep invertebrates.
    Van Dover CL; German CR; Speer KG; Parson LM; Vrijenhoek RC
    Science; 2002 Feb; 295(5558):1253-7. PubMed ID: 11847331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The biodiversity of the deep Southern Ocean benthos.
    Brandt A; De Broyer C; De Mesel I; Ellingsen KE; Gooday AJ; Hilbig B; Linse K; Thomson MR; Tyler PA
    Philos Trans R Soc Lond B Biol Sci; 2007 Jan; 362(1477):39-66. PubMed ID: 17405207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths.
    Yancey PH; Gerringer ME; Drazen JC; Rowden AA; Jamieson A
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4461-5. PubMed ID: 24591588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Reactive oxygen species generation by external surfaces of aquatic organisms].
    Gordeeva AV; Labas IuA
    Tsitologiia; 2003; 45(3):284-9. PubMed ID: 14520885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.
    Arimitsu ML; Hobson KA; Webber DN; Piatt JF; Hood EW; Fellman JB
    Glob Chang Biol; 2018 Jan; 24(1):387-398. PubMed ID: 28833910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy and metabolism.
    Suarez RK
    Compr Physiol; 2012 Oct; 2(4):2527-40. PubMed ID: 23720257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?
    Treberg JR; Speers-Roesch B
    J Exp Biol; 2016 Mar; 219(Pt 5):615-25. PubMed ID: 26936637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A global survey of perfluorinated acids in oceans.
    Yamashita N; Kannan K; Taniyasu S; Horii Y; Petrick G; Gamo T
    Mar Pollut Bull; 2005; 51(8-12):658-68. PubMed ID: 15913661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The nature and role of pigments of marine invertebrates.
    Bandaranayake WM
    Nat Prod Rep; 2006 Apr; 23(2):223-55. PubMed ID: 16572229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatiotemporal drivers of energy expenditure in a coastal marine fish.
    Brownscombe JW; Cooke SJ; Danylchuk AJ
    Oecologia; 2017 Mar; 183(3):689-699. PubMed ID: 28093608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Costs of locomotion and vertic dynamics of cephalopods and fish.
    Webber DM; Aitken JP; O'Dor RK
    Physiol Biochem Zool; 2000; 73(6):651-62. PubMed ID: 11121340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global patterns in marine predatory fish.
    van Denderen PD; Lindegren M; MacKenzie BR; Watson RA; Andersen KH
    Nat Ecol Evol; 2018 Jan; 2(1):65-70. PubMed ID: 29180711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.