These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 17510189)

  • 1. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.
    Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM
    Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue preconditioning increases fatigue resistance in mouse flexor digitorum brevis muscles with non-functioning K(ATP) channels.
    Boudreault L; Cifelli C; Bourassa F; Scott K; Renaud JM
    J Physiol; 2010 Nov; 588(Pt 22):4549-62. PubMed ID: 20855438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A K(ATP) channel deficiency affects resting tension, not contractile force, during fatigue in skeletal muscle.
    Gong B; Miki T; Seino S; Renaud JM
    Am J Physiol Cell Physiol; 2000 Nov; 279(5):C1351-8. PubMed ID: 11029282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KATP channel deficiency in mouse FDB causes an impairment of energy metabolism during fatigue.
    Scott K; Benkhalti M; Calvert ND; Paquette M; Zhen L; Harper ME; Al-Dirbashi OY; Renaud JM
    Am J Physiol Cell Physiol; 2016 Oct; 311(4):C559-C571. PubMed ID: 27488667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treadmill running causes significant fiber damage in skeletal muscle of KATP channel-deficient mice.
    Thabet M; Miki T; Seino S; Renaud JM
    Physiol Genomics; 2005 Jul; 22(2):204-12. PubMed ID: 15914579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during muscle fatigue.
    Matar W; Nosek TM; Wong D; Renaud J
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C404-16. PubMed ID: 10666037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of glibenclamide on tetanic force and intracellular calcium in normal and fatigued mouse skeletal muscle.
    Duty S; Allen DG
    Exp Physiol; 1995 Jul; 80(4):529-41. PubMed ID: 7576594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KATP channels depress force by reducing action potential amplitude in mouse EDL and soleus muscle.
    Gong B; Legault D; Miki T; Seino S; Renaud JM
    Am J Physiol Cell Physiol; 2003 Dec; 285(6):C1464-74. PubMed ID: 12917105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The KATP channel Kir6.2 subunit content is higher in glycolytic than oxidative skeletal muscle fibers.
    Banas K; Clow C; Jasmin BJ; Renaud JM
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R916-25. PubMed ID: 21715697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denervation enhances the physiological effects of the K(ATP) channel during fatigue in EDL and soleus muscle.
    Matar W; Lunde JA; Jasmin BJ; Renaud JM
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R56-65. PubMed ID: 11404279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of K(ATP) channels in intact mammalian skeletal muscle fibres.
    Barrett-Jolley R; McPherson GA
    Br J Pharmacol; 1998 Mar; 123(6):1103-10. PubMed ID: 9559893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B; Rougier O
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in myoplasmic Ca2+ during fatigue differ between FDB fibers, between glibenclamide-exposed and Kir6.2-/- fibers and are further modulated by verapamil.
    Selvin D; Renaud JM
    Physiol Rep; 2015 Mar; 3(3):. PubMed ID: 25742954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue.
    Light PE; Comtois AS; Renaud JM
    J Physiol; 1994 Mar; 475(3):495-507. PubMed ID: 8006831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.
    Miki T; Minami K; Zhang L; Morita M; Gonoi T; Shiuchi T; Minokoshi Y; Renaud JM; Seino S
    Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1178-84. PubMed ID: 12388128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of the myosin-II inhibitor N-benzyl-p-toluene sulphonamide on fatigue in mouse single intact toe muscle fibres.
    Bruton J; Pinniger GJ; Lännergren J; Westerblad H
    Acta Physiol (Oxf); 2006 Jan; 186(1):59-66. PubMed ID: 16497180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice.
    Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H
    J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine kinase injection restores contractile function in creatine-kinase-deficient mouse skeletal muscle fibres.
    Dahlstedt AJ; Katz A; Tavi P; Westerblad H
    J Physiol; 2003 Mar; 547(Pt 2):395-403. PubMed ID: 12562893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.