BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17511013)

  • 21. Beam-type collisional activation of polypeptide cations that survive ion/ion electron transfer.
    Han H; Xia Y; McLuckey SA
    Rapid Commun Mass Spectrom; 2007; 21(10):1567-73. PubMed ID: 17436340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chiral recognition in cinchona alkaloid protonated dimers: mass spectrometry and UV photodissociation studies.
    Scuderi D; Maitre P; Rondino F; Le Barbu-Debus K; Lepère V; Zehnacker-Rentien A
    J Phys Chem A; 2010 Mar; 114(9):3306-12. PubMed ID: 20058939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative ion dissociation of peptides containing hydroxyl side chains.
    Pu D; Cassady CJ
    Rapid Commun Mass Spectrom; 2008; 22(2):91-100. PubMed ID: 18059044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing electrospray ionization efficiency of peptides by derivatization.
    Mirzaei H; Regnier F
    Anal Chem; 2006 Jun; 78(12):4175-83. PubMed ID: 16771548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of ultraviolet photodissociation efficiencies through attachment of aromatic chromophores.
    Vasicek L; Brodbelt JS
    Anal Chem; 2010 Nov; 82(22):9441-6. PubMed ID: 20961088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge state specific facile gas-phase cleavage of Asp 75-Met 76 peptide bond in the alpha-chain of human apohemoglobin probed by electrospray ionization mass spectrometry.
    Bakhtiar R; Wu Q; Hofstadler SA; Smith RD
    Biol Mass Spectrom; 1994 Nov; 23(11):707-10. PubMed ID: 7811760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissociation of protonated peptides containing adjacent arginines.
    Xiao Y; Zu L; Zhang E; Peng J; Huang L; He D; Fang W
    J Biomol Struct Dyn; 2009 Oct; 27(2):209-20. PubMed ID: 19583446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragmentation of singly protonated peptides via interaction with metastable rare gas atoms.
    Berkout VD
    Anal Chem; 2009 Jan; 81(2):725-31. PubMed ID: 19099409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gln-Gly cleavage: a dominant dissociation site in the fragmentation of protonated peptides.
    Jonsson AP; Bergman T; Jörnvall H; Griffiths WJ
    Rapid Commun Mass Spectrom; 2001; 15(9):713-20. PubMed ID: 11319794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zwitterionic states in gas-phase polypeptide ions revealed by 157-nm ultra-violet photodissociation.
    Kjeldsen F; Silivra OA; Zubarev RA
    Chemistry; 2006 Oct; 12(30):7920-8. PubMed ID: 16871505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron ionization dissociation of singly and multiply charged peptides.
    Fung YM; Adams CM; Zubarev RA
    J Am Chem Soc; 2009 Jul; 131(29):9977-85. PubMed ID: 19621955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.
    Lioe H; Laskin J; Reid GE; O'Hair RA
    J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Negative ion mass spectra of Cys-containing peptides. The characteristic Cys gamma backbone cleavage: a joint experimental and theoretical study.
    Bilusich D; Brinkworth CS; Bowie JH
    Rapid Commun Mass Spectrom; 2004; 18(5):544-52. PubMed ID: 14978799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociation profile of protonated fucosyl glycopeptides and quantitation of fucosylation levels of glycoproteins by mass spectrometry.
    Tajiri M; Kadoya M; Wada Y
    J Proteome Res; 2009 Feb; 8(2):688-93. PubMed ID: 19099505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry.
    Chen SH; Hsu JL; Lin FS
    Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of Protease on Ultraviolet Photodissociation Mass Spectrometry for Bottom-up Proteomics.
    Greer SM; Parker WR; Brodbelt JS
    J Proteome Res; 2015 Jun; 14(6):2626-32. PubMed ID: 25950415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tandem mass spectrometry acquisition approaches to enhance identification of protein-protein interactions using low-energy collision-induced dissociative chemical crosslinking reagents.
    Soderblom EJ; Bobay BG; Cavanagh J; Goshe MB
    Rapid Commun Mass Spectrom; 2007; 21(21):3395-408. PubMed ID: 17902198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UV light-induced cross-linking of nucleosides, nucleotides and a dinucleotide to the carboxy-terminal heptad repeat peptide of RNA polymerase II as studied by mass spectrometry.
    Connor DA; Falick AM; Shetlar MD
    Photochem Photobiol; 1998 Jul; 68(1):1-8. PubMed ID: 9679445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions.
    Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A combination of neutral loss and targeted product ion scanning with two enzymatic digestions facilitates the comprehensive mapping of phosphorylation sites.
    Casado-Vela J; Ruiz EJ; Nebreda AR; Casal JI
    Proteomics; 2007 Aug; 7(15):2522-9. PubMed ID: 17610206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.