These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1751105)

  • 1. Performance evaluation of hydroxylated and acylated silicone rubber coatings.
    Tsai CC; Dollar ML; Constantinescu A; Kulkarni PV; Eberhart RC
    ASAIO Trans; 1991; 37(3):M192-3. PubMed ID: 1751105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved biocompatibility of silicone rubber by removal of surface entrapped air nuclei.
    Kalman PG; Ward CA; McKeown NB; McCullough D; Romaschin AD
    J Biomed Mater Res; 1991 Feb; 25(2):199-211. PubMed ID: 2055917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced albumin affinity of silicone rubber.
    Tsai CC; Frautschi JR; Eberhart RC
    ASAIO Trans; 1988; 34(3):559-63. PubMed ID: 3196563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood compatibility of silicone rubber chemically coated with cross-linked albumin.
    Guidoin RG; Awad J; Brassard A; Domurado D; Lawny F; Barbotin JN; Calvor C; Broun G
    Biomater Med Devices Artif Organs; 1976; 4(2):205-24. PubMed ID: 938712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatible coatings with high albumin affinity.
    Tsai CC; Huo HH; Kulkarni P; Eberhart RC
    ASAIO Trans; 1990; 36(3):M307-10. PubMed ID: 2252685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preservation of compliance in a small diameter microporous, silicone rubber vascular prosthesis.
    White RA; Klein SR; Shors EC
    J Cardiovasc Surg (Torino); 1987; 28(5):485-90. PubMed ID: 3654733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo shunt testing of hydrogel-silicone rubber composite materials.
    Vale BH; Greer RT
    J Biomed Mater Res; 1982 Jul; 16(4):471-500. PubMed ID: 7107662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thrombogenicity and the interaction of proteins, platelets and white cells.
    Long J; DeSantis S; Shors E; Uszler M; Wuest C; Klein S; White R
    Biomater Med Devices Artif Organs; 1983; 11(1):63-72. PubMed ID: 6615998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood compatibility of surfaces modified by plasma polymerization.
    Yeh YS; Iriyama Y; Matsuzawa Y; Hanson SR; Yasuda H
    J Biomed Mater Res; 1988 Sep; 22(9):795-818. PubMed ID: 3220845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grafting of a synthetic heparinoid polyelectrolyte onto silicone rubber.
    Sederel LC; Kolar Z; Hummel A; van der Does L; Bantjes A
    Biomaterials; 1983 Jul; 4(3):210-4. PubMed ID: 6193817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility.
    Liu P; Chen Q; Yuan B; Chen M; Wu S; Lin S; Shen J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3865-74. PubMed ID: 23910289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood compatibility of tubular polymeric materials studied by biological surface interactions.
    Julio CA; de-Queiroz AA; Higa OZ; Marques EF; Maizato MJ
    Braz J Med Biol Res; 1994 Nov; 27(11):2565-8. PubMed ID: 7549977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings.
    Andersen TE; Palarasah Y; Skjødt MO; Ogaki R; Benter M; Alei M; Kolmos HJ; Koch C; Kingshott P
    Biomaterials; 2011 Jul; 32(20):4481-8. PubMed ID: 21453967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patency and durability of small diameter silicone rubber vascular prostheses.
    Stimpson C; White R; Klein S; Shors E
    Biomater Artif Cells Artif Organs; 1989; 17(1):31-43. PubMed ID: 2775867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer.
    Zhou J; Yuan J; Zang X; Shen J; Lin S
    Colloids Surf B Biointerfaces; 2005 Mar; 41(1):55-62. PubMed ID: 15698757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of blood compatible elastomers. II. Performance of Avcothane blood contact surfaces in experimental animal implantations.
    Nyilas E
    J Biomed Mater Res; 1972; 6(4):97-127. PubMed ID: 5045267
    [No Abstract]   [Full Text] [Related]  

  • 17. Silicone rubber-hydrogel composites as polymeric biomaterials. IV. Silicone matrix-hydrogel filler interaction and mechanical properties.
    Lopour P; Plichta Z; Volfová Z; Hron P; Vondrácek P
    Biomaterials; 1993 Nov; 14(14):1051-5. PubMed ID: 8312458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Thromboresistance of polymeric materials in construction of an artificial heart and devices for assisted circulation].
    Chepurov AK; Kozlov VK
    Med Tekh; 1977; (2):22-6. PubMed ID: 881966
    [No Abstract]   [Full Text] [Related]  

  • 19. Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons.
    Ai H; Meng H; Ichinose I; Jones SA; Mills DK; Lvov YM; Qiao X
    J Neurosci Methods; 2003 Sep; 128(1-2):1-8. PubMed ID: 12948543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood compatibility of methyl, methyl vinyl, methyl phenyl, and trifluoropropylmethylvinyl silicone rubber without silica fillers in the spiral-coiled membrane lung.
    Kolobow T; Tomlinson TA; Pierce JE
    J Biomed Mater Res; 1977 Jul; 11(4):471-81. PubMed ID: 873940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.