BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17511437)

  • 1. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pair interaction energy decomposition analysis.
    Fedorov DG; Kitaura K
    J Comput Chem; 2007 Jan; 28(1):222-37. PubMed ID: 17109433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy decomposition analysis in solution based on the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2012 Jan; 116(1):704-19. PubMed ID: 22098297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully analytic energy gradient in the fragment molecular orbital method.
    Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.
    Fedorov DG; Jensen JH; Deka RC; Kitaura K
    J Phys Chem A; 2008 Nov; 112(46):11808-16. PubMed ID: 18942816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic study of the embedding potential description in the fragment molecular orbital method.
    Fedorov DG; Slipchenko LV; Kitaura K
    J Phys Chem A; 2010 Aug; 114(33):8742-53. PubMed ID: 20441228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fragment molecular-orbital-multicomponent molecular-orbital method for analyzing HD isotope effects in large molecules.
    Ishimoto T; Tachikawa M; Nagashima U
    J Chem Phys; 2006 Jan; 124(1):14112. PubMed ID: 16409029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Phys Chem A; 2016 Dec; 120(49):9794-9804. PubMed ID: 27973804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate methods for large molecular systems.
    Gordon MS; Mullin JM; Pruitt SR; Roskop LB; Slipchenko LV; Boatz JA
    J Phys Chem B; 2009 Jul; 113(29):9646-63. PubMed ID: 19368406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open-shell pair interaction energy decomposition analysis (PIEDA): formulation and application to the hydrogen abstraction in tripeptides.
    Green MC; Fedorov DG; Kitaura K; Francisco JS; Slipchenko LV
    J Chem Phys; 2013 Feb; 138(7):074111. PubMed ID: 23445001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2018 Feb; 122(6):1781-1795. PubMed ID: 29337557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.
    Li H; Gordon MS
    J Chem Phys; 2007 Mar; 126(12):124112. PubMed ID: 17411113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory.
    Chiba M; Fedorov DG; Kitaura K
    J Comput Chem; 2008 Dec; 29(16):2667-76. PubMed ID: 18484637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring chemistry with the fragment molecular orbital method.
    Fedorov DG; Nagata T; Kitaura K
    Phys Chem Chem Phys; 2012 Jun; 14(21):7562-77. PubMed ID: 22410762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.