These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17511438)

  • 1. First principles NMR calculations by fragmentation.
    Lee AM; Bettens RP
    J Phys Chem A; 2007 Jun; 111(23):5111-5. PubMed ID: 17511438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors.
    Brouwer DH; Enright GD
    J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
    He X; Wang B; Merz KM
    J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and computational characterization of the 17O quadrupole coupling and magnetic shielding tensors for p-nitrobenzaldehyde and formaldehyde.
    Wu G; Mason P; Mo X; Terskikh V
    J Phys Chem A; 2008 Feb; 112(5):1024-32. PubMed ID: 18193848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new algorithm for molecular fragmentation in quantum chemical calculations.
    Bettens RP; Lee AM
    J Phys Chem A; 2006 Jul; 110(28):8777-85. PubMed ID: 16836440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles calculations within periodic boundary conditions of the NMR shielding tensor for a transition metal nucleus in a solid state system: The example of 51V in AlVO4.
    Truflandier L; Paris M; Payen C; Boucher F
    J Phys Chem B; 2006 Nov; 110(43):21403-7. PubMed ID: 17064085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method.
    Beer M; Kussmann J; Ochsenfeld C
    J Chem Phys; 2011 Feb; 134(7):074102. PubMed ID: 21341823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.
    Dracínský M; Kaminský J; Bour P
    J Chem Phys; 2009 Mar; 130(9):094106. PubMed ID: 19275395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the surface structure of hydroxyapatite using NMR spectroscopy and first principles calculations.
    Chappell H; Duer M; Groom N; Pickard C; Bristowe P
    Phys Chem Chem Phys; 2008 Jan; 10(4):600-6. PubMed ID: 18183321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-phase NMR measurements, absolute shielding scales, and magnetic dipole moments of 29Si and 73Ge nuclei.
    Makulski W; Jackowski K; Antusek A; Jaszuński M
    J Phys Chem A; 2006 Oct; 110(40):11462-6. PubMed ID: 17020257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing slight structural disorder in solids by combined solid-state NMR and first principles calculations.
    Cadars S; Lesage A; Pickard CJ; Sautet P; Emsley L
    J Phys Chem A; 2009 Feb; 113(5):902-11. PubMed ID: 19133744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.
    Li W; Li S; Jiang Y
    J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols.
    Abraham RJ; Mobli M
    Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of hydrogen bonding effects on oxygen, nitrogen, and hydrogen chemical shielding and electric field gradient tensors of chitosan/HI salt.
    Khodaei S; Hadipour NL; Kasaai MR
    Carbohydr Res; 2007 Nov; 342(16):2396-403. PubMed ID: 17707780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined fragmentation and systematic molecular fragmentation methods.
    Collins MA; Cvitkovic MW; Bettens RP
    Acc Chem Res; 2014 Sep; 47(9):2776-85. PubMed ID: 24972052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach.
    Hua W; Fang T; Li W; Yu JG; Li S
    J Phys Chem A; 2008 Oct; 112(43):10864-72. PubMed ID: 18837491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio NMR chemical-shift calculations based on the combined fragmentation method.
    Tan HJ; Bettens RP
    Phys Chem Chem Phys; 2013 May; 15(20):7541-7. PubMed ID: 23584332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of reduction on the properties of metal bisdithiolenes: multinuclear solid-state NMR and structural studies on Pt(tfd)2 and its reduced forms.
    Tang JA; Kogut E; Norton D; Lough AJ; McGarvey BR; Fekl U; Schurko RW
    J Phys Chem B; 2009 Mar; 113(11):3298-313. PubMed ID: 19236015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (19)F spin-spin coupling in peri-difluoronaphthalene.
    Jaszuński M; Vaara J
    Phys Chem Chem Phys; 2009 Jun; 11(21):4136-40. PubMed ID: 19458815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.