These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance. Mitrovski SM; Nuzzo RG Lab Chip; 2006 Mar; 6(3):353-61. PubMed ID: 16511617 [TBL] [Abstract][Full Text] [Related]
4. Impact of anode microstructure on solid oxide fuel cells. Suzuki T; Hasan Z; Funahashi Y; Yamaguchi T; Fujishiro Y; Awano M Science; 2009 Aug; 325(5942):852-5. PubMed ID: 19679808 [TBL] [Abstract][Full Text] [Related]
5. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis. Zhu X; Zhang H; Zhang Y; Liang Y; Wang X; Yi B J Phys Chem B; 2006 Jul; 110(29):14240-8. PubMed ID: 16854127 [TBL] [Abstract][Full Text] [Related]
6. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy. Feindel KW; Bergens SH; Wasylishen RE Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498 [TBL] [Abstract][Full Text] [Related]
8. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Ramasamy RP; Ren Z; Mench MM; Regan JM Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217 [TBL] [Abstract][Full Text] [Related]
9. Local and total entropy production and heat and water fluxes in a one-dimensional polymer electrolyte fuel cell. Kjelstrup S; Røsjorde A J Phys Chem B; 2005 May; 109(18):9020-33. PubMed ID: 16852075 [TBL] [Abstract][Full Text] [Related]
10. Visualizing chemical reactions and crossover processes in a fuel cell inserted in the ESR resonator: detection by spin trapping of oxygen radicals, nafion-derived fragments, and hydrogen and deuterium atoms. Danilczuk M; Coms FD; Schlick S J Phys Chem B; 2009 Jun; 113(23):8031-42. PubMed ID: 19453175 [TBL] [Abstract][Full Text] [Related]
11. Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance. Kannan R; Parthasarathy M; Maraveedu SU; Kurungot S; Pillai VK Langmuir; 2009 Jul; 25(14):8299-305. PubMed ID: 19594190 [TBL] [Abstract][Full Text] [Related]
12. A dual electrolyte H2/O2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4 V. Cohen JL; Volpe DJ; Westly DA; Pechenik A; Abruña HD Langmuir; 2005 Apr; 21(8):3544-50. PubMed ID: 15807600 [TBL] [Abstract][Full Text] [Related]
13. Performance of PrBaCo2O(5+delta) as a proton-conducting solid-oxide fuel cell cathode. Lin Y; Ran R; Zhang C; Cai R; Shao Z J Phys Chem A; 2010 Mar; 114(11):3764-72. PubMed ID: 19594122 [TBL] [Abstract][Full Text] [Related]
15. Membraneless, room-temperature, direct borohydride/cerium fuel cell with power density of over 0.25 W/cm2. Da Mota N; Finkelstein DA; Kirtland JD; Rodriguez CA; Stroock AD; Abruña HD J Am Chem Soc; 2012 Apr; 134(14):6076-9. PubMed ID: 22455318 [TBL] [Abstract][Full Text] [Related]
16. Effect of sorbed methanol, current, and temperature on multicomponent transport in nafion-based direct methanol fuel cells. Rivera H; Lawton JS; Budil DE; Smotkin ES J Phys Chem B; 2008 Jul; 112(29):8542-8. PubMed ID: 18578526 [TBL] [Abstract][Full Text] [Related]
17. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Yang S; Jia B; Liu H Bioresour Technol; 2009 Feb; 100(3):1197-202. PubMed ID: 18790635 [TBL] [Abstract][Full Text] [Related]
18. Characterization of anion exchange ionomers in hybrid polymer electrolyte fuel cells. Unlü M; Zhou J; Anestis-Richard I; Kohl PA ChemSusChem; 2010 Dec; 3(12):1398-402. PubMed ID: 21069660 [TBL] [Abstract][Full Text] [Related]
19. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184 [TBL] [Abstract][Full Text] [Related]
20. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Manohar AK; Bretschger O; Nealson KH; Mansfeld F Bioelectrochemistry; 2008 Apr; 72(2):149-54. PubMed ID: 18294928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]