These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17511485)

  • 21. Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2-O2 fuel cell.
    Mitrovski SM; Elliott LC; Nuzzo RG
    Langmuir; 2004 Aug; 20(17):6974-6. PubMed ID: 15301473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exfoliated Pt-clay/Nafion nanocomposite membrane for self-humidifying polymer electrolyte fuel cells.
    Zhang W; Li MK; Yue PL; Gao P
    Langmuir; 2008 Mar; 24(6):2663-70. PubMed ID: 18254647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Gerischer phase element in the impedance diagram of the polymer electrolyte membrane fuel cell anode.
    Meland AK; Bedeaux D; Kjelstrup S
    J Phys Chem B; 2005 Nov; 109(45):21380-8. PubMed ID: 16853774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluidic direct formate fuel cell on paper.
    Copenhaver TS; Purohit KH; Domalaon K; Pham L; Burgess BJ; Manorothkul N; Galvan V; Sotez S; Gomez FA; Haan JL
    Electrophoresis; 2015 Aug; 36(16):1825-9. PubMed ID: 25546700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: effect of electrode assembly and water characteristics.
    Venkata Mohan S; Srikanth S; Veer Raghuvulu S; Mohanakrishna G; Kiran Kumar A; Sarma PN
    Bioresour Technol; 2009 Apr; 100(7):2240-6. PubMed ID: 19071015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of microfluidic fuel cells using transport principles.
    Lee J; Lim KG; Palmore GT; Tripathi A
    Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electricity production by an overflow-type wetted-wall microbial fuel cell.
    Li Z; Zhang X; Zeng Y; Lei L
    Bioresour Technol; 2009 May; 100(9):2551-5. PubMed ID: 19157869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes.
    Varcoe JR; Slade RC; Wright GL; Chen Y
    J Phys Chem B; 2006 Oct; 110(42):21041-9. PubMed ID: 17048923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography.
    Cho KT; Mench MM
    Phys Chem Chem Phys; 2012 Mar; 14(12):4296-302. PubMed ID: 22337210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    J Am Chem Soc; 2006 Nov; 128(43):14192-9. PubMed ID: 17061904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply.
    Tsushima S; Teranishi K; Nishida K; Hirai S
    Magn Reson Imaging; 2005 Feb; 23(2):255-8. PubMed ID: 15833622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells.
    You S; Zhao Q; Zhang J; Liu H; Jiang J; Zhao S
    Biosens Bioelectron; 2008 Feb; 23(7):1157-60. PubMed ID: 18068969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ observation of water distribution and behaviour in a polymer electrolyte fuel cell by synchrotron X-ray imaging.
    Mukaide T; Mogi S; Yamamoto J; Morita A; Koji S; Takada K; Uesugi K; Kajiwara K; Noma T
    J Synchrotron Radiat; 2008 Jul; 15(Pt 4):329-34. PubMed ID: 18552423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalysis in high-temperature fuel cells.
    Föger K; Ahmed K
    J Phys Chem B; 2005 Feb; 109(6):2149-54. PubMed ID: 16851206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembly and electrochemical characterization of nanometer-scale electrode|solid electrolyte interfaces.
    Loster M; Friedrich KA; Scherson DA
    J Phys Chem B; 2006 Sep; 110(37):18081-7. PubMed ID: 16970414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.
    Shao Z; Haile SM; Ahn J; Ronney PD; Zhan Z; Barnett SA
    Nature; 2005 Jun; 435(7043):795-8. PubMed ID: 15944699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell.
    Zhang Z; Martin J; Wu J; Wang H; Promislow K; Balcom BJ
    J Magn Reson; 2008 Aug; 193(2):259-66. PubMed ID: 18555714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.