BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17511583)

  • 1. Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing.
    Wolin MS; Ahmad M; Gao Q; Gupte SA
    Antioxid Redox Signal; 2007 Jun; 9(6):671-8. PubMed ID: 17511583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH.
    Wolin MS; Ahmad M; Gupte SA
    Am J Physiol Lung Cell Mol Physiol; 2005 Aug; 289(2):L159-73. PubMed ID: 16002998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species and the control of vascular function.
    Wolin MS
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H539-49. PubMed ID: 19151250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle.
    Barron JT; Sasse MF; Nair A
    Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms.
    Wolin MS; Burke-Wolin TM; Mohazzab-H KM
    Respir Physiol; 1999 Apr; 115(2):229-38. PubMed ID: 10385036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hypoxia on relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in coronary arterial smooth muscle.
    Gao Q; Wolin MS
    Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H978-H989. PubMed ID: 18567707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sources of oxidative stress in the vessel wall.
    Wolin MS; Ahmad M; Gupte SA
    Kidney Int; 2005 May; 67(5):1659-61. PubMed ID: 15840006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology.
    Alruwaili N; Kandhi S; Sun D; Wolin MS
    Antioxid Redox Signal; 2019 Oct; 31(10):752-769. PubMed ID: 30403147
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling.
    Wolin MS; Gupte SA; Neo BH; Gao Q; Ahmad M
    Cardiol Rev; 2010; 18(2):89-93. PubMed ID: 20160535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia promotes relaxation of bovine coronary arteries through lowering cytosolic NADPH.
    Gupte SA; Wolin MS
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2228-38. PubMed ID: 16415080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone.
    Paffett ML; Walker BR
    Essays Biochem; 2007; 43():105-19. PubMed ID: 17705796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox regulation of responses to hypoxia and NO-cGMP signaling in pulmonary vascular pathophysiology.
    Wolin MS; Gupte SA; Mingone CJ; Neo BH; Gao Q; Ahmad M
    Ann N Y Acad Sci; 2010 Aug; 1203():126-32. PubMed ID: 20716294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of oxidants with vascular signaling systems.
    Wolin MS
    Arterioscler Thromb Vasc Biol; 2000 Jun; 20(6):1430-42. PubMed ID: 10845855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox signaling in oxygen sensing by vessels.
    Weir EK; Hong Z; Porter VA; Reeve HL
    Respir Physiol Neurobiol; 2002 Aug; 132(1):121-30. PubMed ID: 12126700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking.
    Hirrlinger J; Dringen R
    Brain Res Rev; 2010 May; 63(1-2):177-88. PubMed ID: 19883686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology.
    Manea A
    Cell Tissue Res; 2010 Dec; 342(3):325-39. PubMed ID: 21052718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
    Ying W
    Antioxid Redox Signal; 2008 Feb; 10(2):179-206. PubMed ID: 18020963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.