BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 17511653)

  • 21. Specificity of an extracellular proteinase from Conidiobolus coronatus and its inhibition by an inhibitor from insect hemolymph.
    Bania J; Samborski J; Bogus M; Polanowski A
    Arch Insect Biochem Physiol; 2006 Aug; 62(4):186-96. PubMed ID: 16933280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in binding modes of enantiomers of 1-acetamido boronic acid based protease inhibitors: crystal structures of gamma-chymotrypsin and subtilisin Carlsberg complexes.
    Stoll VS; Eger BT; Hynes RC; Martichonok V; Jones JB; Pai EF
    Biochemistry; 1998 Jan; 37(2):451-62. PubMed ID: 9425066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is there a weak H-bond --> LBHB transition on tetrahedral complex formation in serine proteases?
    Shokhen M; Albeck A
    Proteins; 2004 Feb; 54(3):468-77. PubMed ID: 14747995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study of the stabilization of the oxyanion of tetrahedral adducts by trypsin, chymotrypsin and subtilisin.
    O'Connell TP; Malthouse JP
    Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):353-9. PubMed ID: 7733869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening of the active site from water by the incoming ligand triggers catalysis and inhibition in serine proteases.
    Shokhen M; Khazanov N; Albeck A
    Proteins; 2008 Mar; 70(4):1578-87. PubMed ID: 17912756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases.
    Cleary JA; Doherty W; Evans P; Malthouse JP
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1382-91. PubMed ID: 26169698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of delta-chymotrypsin bound to a peptidyl chloromethyl ketone inhibitor.
    Mac Sweeney A; Birrane G; Walsh MA; O'Connell T; Malthouse JP; Higgins TM
    Acta Crystallogr D Biol Crystallogr; 2000 Mar; 56(Pt 3):280-6. PubMed ID: 10713514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate- and pH-dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase family.
    Szeltner Z; Renner V; Polgár L
    Protein Sci; 2000 Feb; 9(2):353-60. PubMed ID: 10716187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new concept for the mechanism of action of chymotrypsin: the role of the low-barrier hydrogen bond.
    Cassidy CS; Lin J; Frey PA
    Biochemistry; 1997 Apr; 36(15):4576-84. PubMed ID: 9109667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multinuclear magnetic resonance studies on serine protease transition state analogues.
    Adebodun F; Jordan F
    J Cell Biochem; 1989 Jun; 40(2):249-60. PubMed ID: 2768349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The crystal structure of phosphonate-inhibited D-Ala-D-Ala peptidase reveals an analogue of a tetrahedral transition state.
    Silvaggi NR; Anderson JW; Brinsmade SR; Pratt RF; Kelly JA
    Biochemistry; 2003 Feb; 42(5):1199-208. PubMed ID: 12564922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Aspergillus serine proteinase by Streptomyces subtilisin inhibitor and high-level expression of this inhibitor in Pichia pastoris.
    Markaryan A; Beall CJ; Kolattukudy PE
    Biochem Biophys Res Commun; 1996 Mar; 220(2):372-6. PubMed ID: 8645312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel chymotrypsin-like serine proteinase from human lung.
    Heidtmann HH; Travis J
    Biol Chem Hoppe Seyler; 1993 Sep; 374(9):871-5. PubMed ID: 8267879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Oxyanion Hole in Serine beta-Lactamase Catalysis: Interactions of Thiono Substrates with the Active Site.
    Curley K; Pratt RF
    Bioorg Chem; 2000 Dec; 28(6):338-56. PubMed ID: 11352471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization, kinetics, and possible function of Kazal-type proteinase inhibitors of Chinese white shrimp, Fenneropenaeus chinensis.
    Wang ZH; Zhao XF; Wang JX
    Fish Shellfish Immunol; 2009 Jun; 26(6):885-97. PubMed ID: 19379816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.
    Song J; Markley JL
    Biochemistry; 2003 May; 42(18):5186-94. PubMed ID: 12731859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transition-state stabilization at the oxyanion binding sites of serine and thiol proteinases: hydrolyses of thiono and oxygen esters.
    Asbóth B; Polgár L
    Biochemistry; 1983 Jan; 22(1):117-22. PubMed ID: 6338911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-conventional affinity chromatography of serine proteinases and their inhibitors.
    Polanowski A; Wilimowska-Pelc A; Kowalska J; Grybel J; Zelazko M; Wilusz T
    Acta Biochim Pol; 2003; 50(3):765-73. PubMed ID: 14515156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cationic inhibitors of serine proteinases from buckwheat seeds: study of their interaction with exogenous proteinases.
    Tsybina TA; Dunaevsky YE; Popykina NA; Larionova NI; Belozersky MA
    Biochemistry (Mosc); 2004 Apr; 69(4):441-4. PubMed ID: 15170382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.