BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1751181)

  • 1. Two-dimensional mechanical and ultrastructural correlates of bovine pericardium for prosthetic valves.
    Liao KX; Frater RW; Stevenson-Smith W; Nikolic SD; Macaluso F; Yellin EL
    ASAIO Trans; 1991; 37(3):M349-51. PubMed ID: 1751181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved biocompatibility of bovine pericardium using a new method of cross linking.
    Liao KX; Seifter E; Gong GF; Yellin EL; Frater RW
    ASAIO Trans; 1991; 37(3):M175-6. PubMed ID: 1751098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials.
    Mirnajafi A; Raymer J; Scott MJ; Sacks MS
    Biomaterials; 2005 Mar; 26(7):795-804. PubMed ID: 15350785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves.
    Zioupos P; Barbenel JC; Fisher J
    J Biomed Mater Res; 1994 Jan; 28(1):49-57. PubMed ID: 8126028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pericardial bioprosthesis: altered tissue shear properties following glutaraldehyde fixation.
    Boughner DR; Haldenby M; Hui AJ; Dunmore-Buyze J; Talman EA; Wan WK
    J Heart Valve Dis; 2000 Nov; 9(6):752-60. PubMed ID: 11128780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between mechanical and hydrodynamic properties of bioprosthesis produced from canine aortic valve.
    Sato M; Maeta H; Okamura K; Ohshima N
    Artif Organs; 1985 May; 9(2):184-91. PubMed ID: 4015456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation.
    Kunzelman KS; Cochran RP
    J Card Surg; 1992 Mar; 7(1):71-8. PubMed ID: 1554980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials.
    Langdon SE; Chernecky R; Pereira CA; Abdulla D; Lee JM
    Biomaterials; 1999 Jan; 20(2):137-53. PubMed ID: 10022783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native Bovine and Porcine Pericardia Respond to Load With Additive Recruitment of Collagen Fibers.
    Bagno A; Aguiari P; Fiorese M; Iop L; Spina M; Gerosa G
    Artif Organs; 2018 May; 42(5):540-548. PubMed ID: 29280157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathology of the Pericarbon bovine pericardial xenograft implanted in humans.
    Valente M; Ius P; Bortolotti U; Talenti E; Bottio T; Thiene G
    J Heart Valve Dis; 1998 Mar; 7(2):180-9. PubMed ID: 9587859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of glutaraldehyde-treated bovine pericardium and tissue selection for bioprosthetic heart valves.
    Simionescu D; Simionescu A; Deac R
    J Biomed Mater Res; 1993 Jun; 27(6):697-704. PubMed ID: 8408100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress state during fixation determines susceptibility to fatigue-linked biodegradation in bioprosthetic heart valve materials.
    Margueratt SD; Lee JM
    Biomed Sci Instrum; 2002; 38():145-50. PubMed ID: 12085592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading.
    Sellaro TL; Hildebrand D; Lu Q; Vyavahare N; Scott M; Sacks MS
    J Biomed Mater Res A; 2007 Jan; 80(1):194-205. PubMed ID: 17041913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium.
    Caballero A; Sulejmani F; Martin C; Pham T; Sun W
    J Mech Behav Biomed Mater; 2017 Nov; 75():486-494. PubMed ID: 28826102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of suturing on the mechanical properties of bovine pericardium--implications for cardiac valve bioprosthesis.
    Lim KO; Cheong KC
    Med Eng Phys; 1994 Nov; 16(6):526-30. PubMed ID: 7858787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the collagen fiber orientation in pericardial leaflets under mechanical loading conditions.
    Alavi SH; Ruiz V; Krasieva T; Botvinick EL; Kheradvar A
    Ann Biomed Eng; 2013 Mar; 41(3):547-61. PubMed ID: 23180029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium.
    Lee JM; Haberer SA; Boughner DR
    J Biomed Mater Res; 1989 May; 23(5):457-75. PubMed ID: 2715160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degenerative pathologic findings after long-term implantation of bovine pericardial bioprosthetic heart valves.
    Nistal F; García-Martínez V; Fernández D; Artiñano E; Mazorra F; Gallo I
    J Thorac Cardiovasc Surg; 1988 Oct; 96(4):642-51. PubMed ID: 3172811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic study of normal parietal pericardium and unimplanted Puig-Zerbini pericardial valvular heterografts.
    Allen DJ; DiDio LJ; Zacharias A; Fentie I; McGrath AJ; Puig LB; Pomerantzeff PN; Zerbini EJ
    J Thorac Cardiovasc Surg; 1984 Jun; 87(6):845-55. PubMed ID: 6727408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.